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ABSTRACT 

Electronic scanning is the most desirable feature of state-of-the-art radar systems. With 

electronic scanning, it is possible to steer the main beam of an array antenna 

instantaneously into a desired direction where no mechanical mechanism is involved in 

the scanning process. Electronic scanning methods including phase scanning, time delay 

scanning, and frequency scanning have been used in various radar applications; however 

new and cheaper scanning methods are still being investigated. It is the purpose of this 

thesis to investigate an array configuration called frequency diverse array (FDA), which 

gives rise to range-, time-, and angle-dependent scanning without using phase shifters. 

In this thesis, first, frequency diverse array as a time-modulated array is 

presented. A general analysis and the theory of time domain scanning is given. Equations 

derived for a time-modulated frequency diverse array are simulated using MATLAB. 

Amplitude tapering and Fourier series expansion is implemented in MATLAB and the 

results are provided for comparison. 

Secondly, analysis of a frequency diverse array is presented. Time-, range-, and 

angle-dependent electronic scanning is achieved by applying a small amount of 

frequency shift among the antenna elements. The simulation results for radiation patterns 

with various excitation types are given. 

Lastly, the radar applications of FDA are considered. The received power from a 

target at a fixed range is simulated in MATLAB and the results are presented.  
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I. INTRODUCTION  

A. BACKGROUND 

One of the most desirable features of modern radar systems is the capability of 

performing beam scanning by electronic methods. An electronically scanned array (ESA) 

is state-of-the-art in radar technology and has been used in many systems on various 

platforms. It has major advantages compared to mechanically steered radars. These 

advantages include increased data rate, instantaneous positioning of the radar beam, and 

elimination of mechanical errors, beam agility, multi-mode operation and simultaneous 

multi-target tracking. 

A considerable amount of effort has been expended in the investigation of the 

methods for electronic scanning of antenna systems. Techniques that have been studied in 

this connection include frequency variation, phase shift scan (using ferrites, travelling 

wave tubes (TWTs), delay lines, etc.), and in a minor way, the ideas of space time 

equivalence [1]. Generally, all of these are narrowband systems that use amplitude or 

phase modulated waveforms that are applied to all elements in the array. A more 

nontraditional approach is to vary the excitation across the array in either the time or 

frequency domain. This leads to frequency diverse arrays (FDAs), where the phase shifter 

is eliminated. 

It is the purpose of this thesis to investigate the characteristics of frequency 

scanning and frequency diverse arrays. With radar and electronic warfare as a focus, this 

thesis researches the applications of frequency diverse arrays and explores its potential 

capabilities. 

In the next subsections, there is a brief introduction to radar and electronic 

warfare systems, the role of radar antenna, desired antenna properties, performance 

measures, gain, beamwidth pattern, and bandwidth of a radar system.  
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1. The Historical Development of Radar  

The word “radar” is the acronym of radio detection and ranging; however, due to 

its wide use, the word has become a standard noun in English, and almost all people have 

had an experience with radar [2]. 

The history of radar extends back to 1885 when German physicist Heinrich Hertz 

conducted several experiments and demonstrated the reflection of waves. In 1904, 

another German, Christian Hulsmeyer, designed an apparatus known to be monostatic 

radar that detected ships. However, the importance of his invention was not realized at 

that time. 

In 1922, S. G. Marconi, who is known as the pioneer of wireless radio, observed 

the radio detection of targets. In the same year, L. C. Young and A. H. Taylor of the U.S. 

Naval Research Laboratory (NRL) demonstrated ship detection by radar. In 1930, Hyland 

accidentally detected aircrafts by radar, and in 1934, first continuous wave (CW) radar 

was designed and used. 

The development of radar accelerated and spread during World War II  

independently in countries including the United States, United Kingdom, Germany, 

Soviet Union, France, Italy, Japan and the Netherlands [2, 3]. By the end of the war, the 

value of radar and the advantages of microwave frequencies and pulsed waveforms were 

widely recognized [2]. 

Since those early days of radar system experiments, a number of developments 

have taken place in the world of radar. Use of Doppler effect on moving target indication 

(MTI) radar, pulse compression, pulse Doppler concepts, use of solid state transistor, 

klystron, TWTs, and electronically scanned array antennas can all be counted as the 

major developments in the radar arena. However, the importance of the digital signal and 

data processing should also be noted, which has led to many theoretical capabilities to be 

realized practically.  

Today, applications of radar include military applications, remote sensing 

(weather observation), air traffic control, law enforcement and highway safety, aircraft 

safety and navigation, ship safety, and space vehicles. Radar has also been found in many 



 3 

applications in industry to measure speed and distance and with special care, the 

identification of physical features of a system of interest.  

2. Basic Radar Functions 

Radar is an electromagnetic system for the detection and location of objects such 

as aircrafts, ships, spacecraft, vehicles, and people, as well as sensing the natural 

environment [3]. Radar radiates electromagnetic energy using the directionality of its 

antenna and then detects the presence of the target by thresholding the received echo 

signal that is reflected from the target. A time-shared single antenna is usually used for 

both transmitting and receiving. This type of radar is called monostatic radar. If the 

transmitter and receiver antennas are not co-located, then it is classified as bistatic radar. 

Most radars used in modern applications are monostatic. After a pulse is transmitted, the 

monostatic radar antenna is switched to receiver mode via a duplexer and the receiver 

literally listens to the arrival of the pulse transmitted. The basic principle of radar is 

depicted in Figure 1.  

 

 

 

 

 

 

 

Figure 1.   Basic Principle of Radar (From [3]) 

The most important information that radar provides is the range, although one can 

extract more information from the received radar signal than a target’s range. The range 

of the target is found by measuring the time elapsed between the transmitted and received  
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pulse. Electromagnetic waves travel with the speed of light ( 83 10c = ×  m/s). Thus, the 

time for the signal to travel to a target located at a range R and return back to radar after 

reflection is 2 /R c . The range to a target is then 

 
2

RcTR =  (1) 

 

where RT is the time for the signal to travel to the target and back.  

 Tracking radars employ narrow pencil beams, so that the target’s location in angle 

or bearing can be approximated from the direction that the radar antenna points, when the 

received signal is of maximum amplitude.  If the target is in motion, then the reflected 

wave experiences a frequency shift due to the Doppler effect. For closing targets, the 

frequency of the reflected signal becomes greater than that of the transmitted signal, 

while the opposite happens when the target moves away from the target and frequency 

decreases. Since the frequency shift is proportional to the velocity of the target, this 

information is used to determine the velocity. The amount of the Doppler shift presented 

to a monostatic radar caused by the movement of the target with a radial velocity of rv is 

 2 r
d

fvf
c

=  (2) 

 

where df  is Doppler frequency shift, f  is the radar frequency, and c  is the speed of 

light. 

 For a pulsed radar, once a pulse is transmitted by the radar antenna, the 

transmitter must wait for a sufficient amount of time in order for the received pulse 

(echo) to be returned from the target without any ambiguity. Due to this reason, the pulse 

repetition rate plays a critical role in establishing a radar’s unambiguous range. If the 

time between pulses pT  is too short, an echo signal from a long-range target might arrive 

after the transmission of the next pulse and be mistakenly associated with the second 

pulse rather than the actual pulse transmitted earlier that created the received echo. This 

can result in an incorrect and or ambiguous range measurement [2]. The maximum 

unambiguous range can be written as 
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2 2

p
un

p

cT cR
f

= =  (3) 

 

where pT  is the pulse repetition period and pf  is the pulse repetition frequency (PRF). 

The concept of a resolution cell arises frequently in radar nomenclature. A 

resolution cell is the volume in space that contributes to the echo received by radar at any 

one instant [2]. The resolution cell can be considered as the volume covered by the 

angular resolution and the range resolution. The range resolution depends on the duration 

of the pulse transmitted. For a monostatic radar to resolve two closely spaced targets, 

they must be separated by a distance   

 
2
cR τ

∆ =  (4) 

 

where R∆  is the range resolution and τ is the pulse duration. 

Cross-range resolution, which is in fact angular resolution defined in terms of 

range, depends on the 3 dB beamwidth of the antenna. Since most radars employ pencil 

beams, the 3 dB beamwidth of the antenna is usually small in terms of angle. Therefore, 

small-angle approximations can be used to derive an approximate cross-range resolution 

equation, which is given by  

 3dBCR Rθ∆ ≈  (5) 
 

where CR∆  is the cross-range resolution for two scatterers located at the edges of the 

beam, R is the range, and 3dBθ  is the 3 dB beamwidth of the antenna (in radians). 

3. Radar Antenna 

As indicated by Equation (5), the antenna plays an important role in terms of 

sensitivity and the angular resolution of radar. Most radar antennas employ pencil beams 

in order to have a good angular resolution. Different types of antennas including 

parabolic reflectors, scanning feed antennas, lens antennas, and phased array antennas 

have been used in various radar systems.  
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The most important properties of an antenna are its gain, beamwidth, and sidelobe 

levels. Antennas direct the radiated energy in the desired direction by their narrow 

beamwidths. Antenna gain is the ratio of power per unit solid angle radiated by the 

antenna to power per unit solid angle radiated by an isotropic antenna. Isotropic antennas 

radiate uniformly in all directions. A useful rule of thumb for a typical high-gain antenna 

used in practice is 

 
3 3

26000

dB dB

G
θ φ

≈  (6) 

 

where 3dBθ  and 3dBφ  are 3 dB beamwidths in azimuth and elevation in degrees, 

respectively [2]. If an antenna has a gain greater than one in some directions, it must have 

a gain less than one in other directions, since energy is conserved by the antenna. An 

antenna designer must take into account the application for the antenna when determining 

the gain. In radar applications, high-gain antennas have the advantage of longer range and 

better signal quality, but must be pointed carefully in a particular direction. On the other 

hand for most frequencies of interest, they are large, heavy, and generally expensive.  

The angular resolution of the antenna is determined by its main lobe and is 

conventionally expressed in terms of 3 dB or half power beamwidth (HPBW). The 3 dB 

beamwidth can be defined as the angular width where the normalized main lobe 

amplitude drops down to 0.707. The 3 dB beamwidth in radians can be approximated by 

the following formula: 

 3 0.89dB D
λθ ≈  (7) 

 

where D is the diameter of the antenna. From this equation it can be seen that a smaller 

beamwidth requires a larger aperture or a shorter wavelength (i.e., higher frequency) [2]. 

This is one of the reasons that radars usually use frequencies greater than about 1 MHz. 

  The peak sidelobe of the antenna pattern affects how echoes from angles other 

than the antenna main lobe can affect the detection of targets. Sidelobe signals can be 

intentional (i.e., jamming) or unintentional (i.e., clutter) interference signals. For the 

uniform illumination pattern, the peak side lobe level is 13.2 dB below the main lobe 
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peak. This is often considered too high in radar systems [2]. Antenna sidelobes can be 

reduced by the use of tapering of the excitation current amplitudes. Amplitude tapering is 

similar to windowing functions used in digital signal processing. The consequence 

associated with tapering the antenna currents to reduce the sidelobes is that the antenna 

gain will be reduced as well. 

 

Bandwidth is the difference between the upper and lower cut-off frequencies of a 

radar receiver, and is typically measured in Hertz. In case of a baseband channel or video 

signal that is near zero frequency, the bandwidth is equal to its upper cut-off frequency. 

In a radar receiver, the bandwidth is mainly determined by the width of the filtering and 

signal amplification in the IF strip right before detection. The receiver must be able to 

process the signal bandwidth of the backscattered pulse. 

The wider the bandwidth means the greater the degree of noise that will be input 

to the receiver. Since the typical background noise is white noise, which exists at all 

frequencies, the broader the frequency range to which the receiver bandpass filters are 

tuned, the higher the intensity level of the noise and the lower the signal-to-noise ratio 

(SNR), and so the receiver’s sensitivity. 

The bandwidth is roughly proportional to the amount of information carried by 

the signal. To detect a rectangle pulse with the Fast Fourier Transformation (FFT) the 

bandwidth of the receiver is equal to the highest sine wave frequency component that is 

significant. The higher the receiver’s bandwidth, the slower is the rise time of the edges 

of the rectangular signal. 

Generally, the necessary bandwidth of a pulse with the shape of a half-wave sine 

signal of duration τ  is assumed as [4]. 

 1B
τ

=  (8) 

 

http://www.radartutorial.eu/09.receivers/rx09.en.html�
http://www.radartutorial.eu/10.processing/sp15.en.html�
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4. Radar Range Equation 

The radar equation relates the range of a radar to the characteristics of the 

transmitter, receiver, antenna, target, and the environment. It is useful not only for 

determining the maximum range at which a particular radar can detect a target, but it can 

serve as a means for understanding the factors affecting radar performance [3]. In its 

simplest form, the radar range equation can be derived from the received power, which 

can be written as  

 2 24 4
t

R e
PGP A

R R
σ

π π
  = ⋅  

  
 (9) 

 

where RP  is the received power, tP  is the transmitted power, G  is the gain of the 

transmit antenna, σ  is the radar cross section of the target, and eA  is the effective 

aperture of the receive antenna. From Equation (9), range R can be written as  

 
1/4

2(4 )
t e

r

PGAR
P
σ

π
 

=  
 

 (10) 

 

Equations (9) and (10) clearly show that the received power is inversely 

proportional to 4R  and that the received power is far lower than the transmitted power. 

Since most radars have a long-range performance requirement, this equation also shows 

that the sensitivity of the receiver should be good enough to receive very weak signals 

reflected from the target. 

B. PREVIOUS RESEARCH  

As was previously mentioned, the main objective of this thesis is to investigate 

frequency diverse arrays that employ novel electronic scanning techniques. Unlike 

conventional arrays, frequency diverse arrays do not use phase shifters to generate phase 

shifts among the elements of the array in order to point the beam to desired directions. 

The cost of phase shifters can be up to nearly half the entire cost of an electronically 

scanning phased array. In addition, most of the gallium arsenide-based semiconductor 

phase shifters usually have high insertion loss (up to -13 dB). The phase shifters 
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introduce uncertainty and error in reliably transmitting and receiving pulses in specific 

directions. Moreover, modern systems are emphasizing aspects of simplicity, reliability, 

and versatility. Consequently, more attention is paid to new concepts for electronic beam 

scanning [5]. 

The time-modulated array antenna, which used a new technique for electronic 

scanning, was introduced by H. E. Shanks in his paper, which was published in 1962 [1]. 

In his paper, Shanks discussed the theory of simultaneous scanning using time 

modulation techniques and showed that the required complex pattern was generated by a 

progressive-pulse aperture excitation. He derived the fundamental equations and 

relationships concerning the form of pulse excitation and scanning coverage. This paper 

established the basics of a frequency diverse array where Shanks used a small amount of 

frequency increment among the array elements. He also showed that by using this 

technique, it was no longer necessary to use phase shifters to scan the main beam into the 

desired direction.  

Due to new advances in digital signal processing, the use of frequency diversity in 

array theory started to get more attention. Antonik et al. [6] presented the generalized 

structure for the frequency diverse array radar in 2006. They showed that when a 

frequency increment is applied across the array elements, the resulting pattern depends on 

the range. They also demonstrated how the scan angle changed with frequency increment 

and generated an apparent scan angle.  

In another paper [7], Antonik et al. described the use of multi-mode waveform 

diversity to enable the execution of two different missions at the same time. They 

particularly focused on the use of a frequency diverse array in synthetic aperture radar 

(SAR) and moving target indication (MTI) radar in their paper and proposed a hardware 

configuration for a frequency diverse array that could perform both of these tasks.  

Secmen et al. [8] presented a frequency diverse array antenna with a periodic 

time-modulated pattern in range and angle in 2007. In their paper, they demonstrated the 

periodic manner of the pattern in three domains, namely time, angle and range. They also 

provided the expressions for determining the position and the angular bearing of a target 

for a frequency diverse array. 
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In 2008, Huang et al. [9] simulated a frequency diverse array using an eight-

element microstrip patch array on Microwave Studio and generated the theoretical array 

pattern on a computer aided design (CAD) program. Their work proves that the 

frequency increment across the array determines the scanning speed of a frequency 

diverse array.  

In a recent paper, which has not been published yet, Secmen et al. presented the 

design and implementation of a frequency diverse array using linear frequency modulated 

continuous waveform (LFMCW). In their work, they analyzed the frequency diverse 

array concept in terms of a mathematical foundation. Their work also justified the 

important parameters. In their effort, they revealed the similarity between frequency 

scanning and the LFMCW-based frequency diverse array.  

C. OBJECTIVES 

The main purpose of this thesis is to investigate frequency diverse arrays, their 

characteristics, and their use in radar applications. First, array theory is introduced as a 

building block and then the concept of frequency diverse arrays is investigated in detail. 

Also in this thesis, the question of what kind of waveforms one can use to implement 

frequency diversity is addressed.  

Ultimately, this thesis may be helpful to electronic warfare officers and technical 

personnel to understand frequency diverse arrays and their implementation in the field of 

radar. The theoretical concepts introduced in this thesis can be used in a hardware 

implementation of a frequency diverse array antenna. Moreover, the results of this thesis 

can be the basis of further developments and research. 

D. ORGANIZATION OF THE THESIS 

This thesis consists of six chapters. Chapter I provides an introduction to 

electronic scanning and its advantages.  
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Chapter II presents the background for the notion of an array, uniform linear 

arrays, beam steering, and image theory that is used in subsequent chapters. This chapter 

also discusses the frequency scanning concept and phase shifters. 

Chapter III introduces a time-modulated antenna and time domain scanning where 

antenna elements are switched on and off periodically with a small frequency increment. 

This chapter also provides the far-field pattern of a time-modulated antenna and the 

possible array configuration. 

Chapter IV presents a general analysis of a frequency diverse transmit antenna 

with a periodically modulated pattern in range, angle and time. The expressions for 

determining the position and the angular bearing of the target for this type antenna are 

given. 

Chapter V provides the radar implementations of a frequency diverse array and 

deals with the range detection of the target.  

Chapter VI gives the conclusions of the thesis and recommends areas for future 

work. 
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II. ANTENNA ARRAY THEORY 

A. ARRAY ANTENNAS 

Several electrically small, low-gain antennas can be arranged in space and 

interconnected to produce a high-gain directional radiation pattern. Such a configuration 

is referred to as an array antenna, or simply an array. Arrays offer the unique capability of 

electronic scanning of the main beam. By changing the phase of the exciting currents in 

each antenna element of the array, the radiation pattern can be scanned through space. 

The array is then called a phased array [10]. 

Most arrays consist of identical antenna elements such as dipoles, horns, or 

reflectors. However, there certainly might be arrays consisting of different types of 

antenna elements. In general, array elements can be distributed in linear arrangement, on 

a surface, or throughout a volume. The most common configurations for antenna arrays 

are linear arrays and planar arrays. For the purpose of this thesis, only linear arrays that 

have identical antenna elements are considered. The frequency diverse array (FDA) 

concepts developed for linear arrays can be extended to other array configurations. 

In the far-field region, the electric field from a radiating antenna element can be 

expressed as the multiplication of two functions. The first function is the spherical 

propagation factor 
jkRe

R

−

, which depends on the range, and the second function is 

( , )ef θ φ , which is a normalized function that accounts for the directional dependence of 

the element’s electric field [11].  

With regards to the elements in the array shown in Figure 2, the far electric field 

from the elements of the array can be written as †  

 ( , )
n

n

jkR
j

n n e
n

eE a e f
R

ψ θ φ
−

=  (11) 

    

†  In this section, phasor quantities are used with a j te ω time dependence assumed and suppressed.  
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where na  represents the amplitude and nψ  represents the phase of the excitation which 

gives rise to the radiated electric field [11]. The angle theta is the angle from the normal 

with respect to the axis of the array (i.e., the z-axis in Figure 2) 

 

 

Figure 2.   Linear Array Configuration and Geometry (After [11]) 

In most radar applications, only the far field is of interest, and therefore some 

approximations can be made. In an amplitude sense, differences in distances from 

individual antenna elements can be ignored and approximated by 0nR R≈ . However, a 

small difference in the distances can generate significant phase shifts. If we restrict P to 

lie in the x-z plane the range dependence in the njkRe−  term can be approximated by 

 0 sinnR R nd θ≈ −  (12) 
 

Using Equations (11) and (12), the superposition of all electric fields from N individual 

antenna elements at a far-field observation point P  can be written as 

 

1N −
 

n  

2N −
 

0  

1 

2 
d
 
d
 

d
 

sinnd θ  

x 

z 

To far field observation point 
(P) 

0R  
1R  

2R  

nR  

1NR −  

θ 
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0 1

sin

00

( , ) n

jkR N
j jnkd

n e n
n

eE f a e e
R

ψ θθ φ
− −

=

  =   
  
∑  (13) 

 

The array factor ( )AF  is defined as 

 
1

sin

0

n

N
j jnkd

n
n

AF a e eψ θ
−

=

 =  
 
∑  (14) 

 

The array factor is a function of the positions of the antenna elements and their current 

(or voltage) excitation coefficients, but not a function of the specific type of radiators 

used. The array factor represents the far-field radiation pattern of the N elements, in the 

case where the individual elements are isotropic radiators [11].  

The array factor is governed by two input (excitation) functions. The first one is 

the array amplitude distribution given by the coefficients { }na . The second one is the 

array phase distribution given by the phases { }nψ . By changing the amplitude or phase 

distribution one can control the sidelobe levels or steer the main beam of the array.  

1. Uniformly Excited, Equally Spaced Linear Arrays 

One important case is the equally spaced and uniformly excited linear array. This 

array is excited by equal current amplitudes so 

 0 1 2 1... Na a a a −= = = =  (15) 
 

The element phases are considered to be equal, and can arbitrarily be set to zero 

( 0)nψ = . The array factor is then 

 
1 1

sin
0 0

0 0

N N
jnkd jn

n n
AF a e a eθ γ

− −

= =

= =∑ ∑  (16) 

 

where sinkdγ θ= . Equation (16) is a geometric series and the array factor turns out to 

be  

 ( 1) /2
0

sin( / 2)
sin( / 2)

j NNAF a e γγ
γ

−=  (17) 
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The phase factor ( 1) /2j Ne γ−  is not important unless the array output signal is further 

combined coherently with the output from another antenna. In fact, if the array was 

centered about the origin, the phase factor would not be present since it represents the 

phase shift of the array phase center relative to the origin [10]. Neglecting the phase 

factor in Equation (17) gives 

 0
sin( / 2)
sin( / 2)

NAF a γ
γ

=  (18) 

 

The magnitude of the array factor has its maximum value when γ  is equal to zero 

and the maximum value is 0Na . The normalized array factor magnitude for the uniformly 

excited, equally spaced linear array is then  

 sin( / 2)
sin( / 2)norm

NAF
N

γ
γ

=  (19) 

 

The array factor of a 6-element array of 
2
λ  spaced elements given in Equation 

(19) is plotted in Figure 3, and it shows that when the array is uniformly excited with the 

same current amplitudes and zero phase shift across the elements of the array, the main 

beam points in the broadside direction ( 0θ =  ) . 

 

Figure 3.   Array Factor of 6-element Array with 
2

d λ
= , 0 0θ =   



 17 

2. Pattern Multiplication 

In the previous section, uniformly excited and equally spaced linear arrays were 

discussed. The radiators were considered to be isotropic antennas that radiate equal 

power in all directions and have no directionality. This is not the case in the real-world 

applications of radar. Actual arrays have element antennas that are not isotropic.   

If the array elements are similar in the sense that they are in the same direction, of 

the same length, and have the same distribution, then patterns of all antenna elements will 

be similar and simplifications can be made. Although antenna elements may have 

different amplitudes and phases, they will have the same spatial variation. When all 

antenna elements are identical, the electric field can be written as a product of an element 

pattern and an array factor. The process of factoring the pattern of an array into an 

element pattern and an array factor is referred to as the principle of pattern 

multiplication. It can be summarized that the electric field pattern of an array consisting 

of similar elements is the product of the pattern of the elements and the pattern of an 

array of isotropic point sources with the same locations, relative amplitudes, and phases 

as the original array. 

Based on the principle of pattern multiplication, the complete (normalized) 

pattern of an array antenna can be written as 

 ( , ) ( , )norm norm norm e normF EF AF f AFθ φ θ φ= ⋅ = ⋅  (20) 
 

where normEF  stands for the element factor [10].  

3. Electronic Scanning of Arrays 

In Section 1, it was shown that when a linear array is excited uniformly, which 

means identical current amplitudes and zero interelement phase, the resulting array 

pattern has a peak or main lobe at the broadside of the antenna. Beam steering refers to 

changing the direction of the main beam of the array pattern. Electronic scanning is 

achieved by applying linearly progressive phase shifts from element to element across the 
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array such that the maximum value of the pattern now occurs at the angle theta instead of 

broadside to the array axis. This concept is illustrated in Figure 4. 

 

Figure 4.   The Application of a Linear Phase 

The array factor of the array depicted in Figure 4 can be written as  

 
'

1 1 1
sin ( sin )

0 0
0 0 0

N N N
jn jnkd jn kd jn

n n n
AF a e e e a eψ θ θ ψ γ

− − −
− −

= = =

= = =∑ ∑ ∑  (21) 

 

If we restrict P to lie in the x-z plane as before, then sinkdγ θ ψ= − . The interelement 

phase shift ψ  is defined in terms of angle 0θ , which can be called the scan angle which is 

the direction for the pattern maximum value, 

 0sinkdψ θ=  (22) 
 

Then, 

 '
0(sin sin )kdγ θ θ= −  (23) 

 

1 0 2 2N −  1N −  

0R  

Input 
 

P  

θ  

z 

x 

0  ψ−  2ψ−  ( 2)N ψ− −  ( 1)N ψ− −  Phase shifter 

1: N  power 
divider 



 19 

 Since the array factor becomes a maximum when 'γ  is equal to zero, the scan 

angle must be equal to the pointing direction of the main beam 0( )θ θ= . When the phase 

is uniform (in other words, when 0ψ =  ), 0θ  must be 0 .  This corresponds to the 

broadside direction. Similarly, to steer the beam to the endfire direction (along the array 

axis), which corresponds to 90θ =  , one should apply an incremental phase shift to all 

elements of the array of kd  radians. In general, by applying a linear phase across the 

array, the main beam can be steered to any desired direction. 

 Figure 5 depicts the array factor of an electronically scanned half wavelength- 

spaced 6-element array when a linear phase progression of 
9
π  radians (i.e., 20 degrees) is 

applied. It is clearly seen that the main beam of the antenna points 20  and beam steering 

to the desired direction is achieved. Observe also that the only parameter that has 

changed from the previous unscanned array is the scan angle (i.e., linear phase).  When 

comparing the two outputs, it can be noted that scanning an array increases that pattern 

width (i.e., decreased the directivity of the antenna output). 

 

Figure 5.   Array Factor for an Electronically Scanned 6-element Array with 
2

d λ
= , 
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0 20
9
πθ = =   

 A linear phase distribution can be accomplished by controlling the excitation of 

each radiating element individually through the use of electronically controlled phase 

shifters. Alternatively, another technique known as frequency scanning can be used [11]. 

The next section briefly discusses frequency scanning and provides the basic idea behind 

the frequency diverse array concept. 

4. Frequency Scanning 

The outstanding feature of frequency scanning is that it is a means for providing 

inertialess beam scanning, which in comparison with other inertialess scanning 

techniques, is economical, relatively simple, and reliable. This is extremely desirable in 

modern radars that have as performance objectives the rapid detection and accurate 

position measurement of multiple targets at widely different positions, including cases 

where the targets have high velocities and acceleration and hence require rapid updating.  

So far, the widest application for frequency scanning has been found in the fields 

of air surveillance and aircraft control. Radars for these applications have been 

advantageously designed and produced with, in most cases, antennas mechanically 

rotated in azimuth and frequency scanned in elevation to provide three-dimensional 

aircraft position data. Many other configurations have been conceived to cover a 

relatively broad spectrum of applications ranging from such diverse fields as airborne 

surveillance and mapping, mortar shell detection, and aircraft landing precision radars 

[12].  

To establish the basic technique of frequency scanning, consider an 

electromagnetic wave of frequency f  propagating through a transmission line of length 

l  with a velocity of v . The electromagnetic wave experiences a phase shift as follows: 

 2 2 fkl l l
v

πφ π
λ

= = =  (24) 
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0θ  
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Therefore, a change in the frequency of the electromagnetic wave propagating at constant 

velocity along the transmission line introduces a phase shift as seen in Equation (24). In 

this manner, it is possible to get an electronic phase shift ( )ψ relatively easy compared to 

other methods. Frequency scanned arrays mostly use equal length series feed structures to 

very simply introduce linear phase across elements.  Since no phase shifting devices are 

required, there is no insertion loss due to phase shifters. The series feed arrangement is 

illustrated in Figure 6. 

 

 

 

 

 

  

Figure 6.   Series–fed, Frequency Scanned Linear Array (From [3]) 

If the beam is to point in a direction 0θ , the phase difference between elements 

should be 0sinkd θ . In frequency scanned arrays, usually an integral number of 2π  

radians is added. This permits a scan angle to be obtained with a smaller frequency 

change. Equating phase difference to phase shift obtained from a line of length l  gives 

[3] 

 0
2 2sin 2d m lπ πθ π
λ λ

+ =  (25) 

 

 0sin m l
d d
λθ = − +  (26) 

 
When 0 0θ =  , which corresponds to the broadside beam direction, Equation (25) 

results in 0/m l λ= , where 0λ  corresponds to the wavelength and 0f  is the frequency at 

the broadside direction. Using this information, Equation (26) can be rewritten as 
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 0
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0

sin 1 1 fl l
d d f
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λ

   
= − = −   

  
 (27) 

 

If the beam is steered between 1θ± , the wavelength excursion λ∆  turns out to be  

 1
0

sin
2
l
d

λθ
λ
∆

=  (28) 

 

An examination of Equation (26) shows that as the frequency is changed, one 

beam after another will appear and disappear, with each beam corresponding to a 

different value of m  [3]. As the delay gets larger in the transmission line compared to the 

spacing of the elements, one can change the beam-pointing angle more rapidly as a 

function of wavelength.  For this reason, in frequency scanned arrays usually tapped 

delay lines or slow wave structures are used, which may be folded, helically wound, or 

dielectrically loaded in form.  

With antennas having such a delay line, the beam-pointing angle can be made to 

be an accurately controlled function of RF frequency. Volumetric aerial coverage can be 

obtained in radar systems using these antennas by radiating an orderly progression of 

sequentially generated transmitter signals, each at a different RF frequency [12]. This 

concept is illustrated in Figure 7. Beamwidths typically range from 0.5  to 5  in the 

frequency scanned plane. Angular coverage provided by frequency scan ranges from as 

low as 10  to well over 90  and is commonly achieved with frequency bands of between 

one and ten percent of the carrier frequency [12].  

 

 

 
 
 
 
 
 
 

Figure 7.   Frequency Scanning (From [12]) 
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Generally, a snake feed configuration is used to scan a pencil beam in elevation, 

with mechanical rotation providing the azimuth scan. The AN/SPS-48 is a frequency 

scanned radar used on U.S. Navy ships for the measurement of the elevation and azimuth 

of aircraft targets [3]. A block diagram of a typical frequency scan is depicted in Figure 8.  

 

 

Figure 8.   Block Diagram of a Frequency Scan Radar (After [12]) 

B. GROUND PLANES AND THE METHOD OF IMAGES 

Most radar antennas use a conducting ground plane to limit radiation to a 

hemispherical region. Image theory can be used to compute the radiation pattern of 

elements above a ground plane. Image theory states that any given current configuration 

above an infinite, perfectly conducting plane is electrically equivalent to the combination 

of the source current configuration and its image configuration, with the conducting plane 

removed [11]. Even if the ground plane is not infinite and perfectly conducting, image 

theory can still provide useful pattern data.  
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1. Arrays with Elements Above a Ground Plane 

In Section A above, linear arrays were discussed. The radiation patterns of linear 

arrays are axially symmetric. Here we have aligned the array along the z axis rather than 

the x axis, to be consistent with the FDA formulation in Chapter IV. For practical radar 

applications, a ground plane is added to provide a hemispherical radiation pattern in the 

+x direction. To obtain the complete array factor for an array with a ground plane, first 

consider a linear array that consists of N isotropic point sources in the y-z plane as shown 

in Figure 9. Assuming that the array elements are centered at the origin, element locations 

can be found from the following equation:  

 ( )2 1
2n

n N
z d

− +
= , 1,...,n N=  (29) 

 

 

Figure 9.   Linear Array Centered at the Origin (After [13]) 

The array factor of a uniformly excited and equally spaced linear array is given in 

Equation (17). If the excitation current amplitudes are all equal to one, then the array 

factor becomes  

 sin( / 2)
sin( / 2)

NAF γ
γ

=  (30) 
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y 
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where coskdγ θ ψ= −  [13]. 

 Most radar antennas are placed above a perfect electric ground plane of finite 

extent. However, if the ground plane extends sufficiently beyond the elements then it can 

be approximated by an infinite ground plane. The array above an infinite, perfectly 

conducting ground plane is equivalent to a linear array with new elements comprised of 

the real source elements and their images in free space that are separated by a distance of 

2h. This new “element” is sometimes referred to as a subarray. Figure 10 illustrates the 

concept. 

 

Figure 10.   Two-element Linear Array (Subarray) Along the z-axis Using Image 
Theory (After [13]) 

The subarray factor (SF) for a two-element linear array along the x-axis, with 

images out of phase with sources, is 

 sin cos sin cosjkh jkhSF e eθ φ θ φ−= −  (31) 
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where h is the distance from the antenna elements to the ground plane. If Euler’s 

trigonometric identity is used, 

 1sin ( )
2

j je e
j

θ θθ −= −  (32) 

 

then Equation (31) becomes 

 2 sin( sin cos )SF j kh θ φ=  (33) 
 

The total normalized pattern factor is obtained using the principle of pattern 

multiplication  

 sin( / 2)( , ) ( ) sin( sin cos )
sin( / 2)norm norm norm norm norm

NF AF SF EF kh EF
N

γθ φ θ φ
γ

= ⋅ ⋅ =  (34) 

 

In general, the element factor (EF) has both θ  and φ  components. For a half-

wave dipole with maximum current Im along the y-axis, the far electric field components 

can be written as [15]  

 0
2 2

cos sin sin
2 cos sin

2 1 sin sin

jkR
mj I eE

Rθ

π θ φ
η θ φ

π θ φ

−
  

    =
− 
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 (35) 
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 (36) 

 

 To normalize the element factors, one should remove the leading factor  

0

2

jkR
mj I e

R
η

π

−

 in the equations. If the dipoles are ideal dipoles (i.e., uniform current mI  and 

length L ) the terms in the brackets reduce to 1 and L is added to the leading factor [13]. 

In this chapter, the basic array antenna theory was presented and the means of 

beam steering with the use of electronically controlled phase shifters was explained. In 

addition to this, another beam steering technique, namely frequency scanning, was 



 27 

introduced as a building block to understand frequency diverse arrays. Lastly, image 

theory and its use in array applications were discussed. Also, the equations for a half-

wave dipole along the y-axis were given. All of these results will be used in the 

implementation of a frequency diverse array above a ground plane, where the elements of 

the array are the half-wave dipoles directed in the y-direction (parallel) and separated 

along the x-axis (array axis).  

In the next chapter, a frequency diverse array, which employs a time-modulated 

pulse excitation, will be discussed.  
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III. TIME DOMAIN SCANNING 

A. INTRODUCTION 

Perhaps the most desired feature of phased arrays is electronic scanning. In 

Chapter II, two techniques of electronic scanning were introduced, namely, phase 

scanning and frequency scanning. However, time domain techniques can be applied to 

antennas to provide a means for quasi-electronic scanning. Generally, because of the ease 

of analysis and implementation there is a bias towards frequency domain techniques. 

However, time domain techniques, especially periodic time domain modulation of one or 

more antenna parameters, can provide advanced radiation characteristics including 

sidelobe reduction, multiple beamscanning, and multi-mode operation. The pattern of an 

antenna is a function of three spatial dimensions; therefore, the time domain can be 

considered as the fourth dimension of an antenna.  

If a wave of energy is incident on an antenna whose parameters are modulated in 

a periodic manner, the voltage across the output terminals will be of the following form:  

 

 { }0 1 0 2 0( , ) ( ) ( ) ( ) cos ( ) cos 2 ... j tE t As t b b t b t e ωθ θ θ ω θ ω= + + +  (37) 
 

where A contains the radial dependence, θ  denotes the spatial variation in the signal, and 

the Fourier series containing ( )nb θ , which are Fourier coefficients, is the time-dependent 

radiation pattern with 0ω as the fundamental modulation frequency. Symmetry in the 

terminal voltage as a function of time is assumed (otherwise the series expansion shown 

above will also have sinusoidal terms). One can refer to ω  as the center frequency or 

carrier frequency although it is not a carrier frequency in the traditional sense. The 

modulation frequency is assumed to be much less than the center frequency (i.e., 

0ω ω ). In Equation (37), ( )s t  represents the input information. For radar applications 

( )s t  can be considered as a pulse waveform [14]. The following paragraphs develop the 

time-space relationship as explained by Shanks and Bickmore [1, 14]. 
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Consider a distribution of radiating sources spread over a surface 0S . Then, its 

radiation pattern can be written as 

 
0

0 0 0( ) ( ) ( , )
S

g S G S dSθ ξ θ= ∫  (38) 

 

where 0( )Sξ  is the complex distribution of energy over the surface and 0( , )G Sθ  is 

Green’s function. Green’s function can be thought of as spatial impulse function [10]. A 

sample Green’s function for a spherical wave 
njkR

n

e
R

 was shown earlier in Equation (11). 

If 0( )Sξ  varies with time then it can be denoted as 0( , )S tξ , and if ( )g θ  depends on the 

time variable it becomes ( , )g tθ . Equation (38) can be written as 

 
0

0 0 0( , ) ( , ) ( , )
S

g t S t G S dSθ ξ θ= ∫  (39) 

 

Due to the periodic nature of 0( , )S tξ , it can be decomposed into a Fourier series 

expansion and the Fourier series coefficients can be calculated. The Fourier series 

expansion of 0( , )S tξ  is  

 0 0 0 1 0 0 2 0 0( , ) ( ) ( ) cos ( ) cos 2 ...S t S S t S tξ ζ ζ ω ζ ω= + + +  (40) 
 

where 0( )n Sζ  are the Fourier coefficients of the series and 0ω  is the fundamental 

modulation frequency. Substituting Equation (40) into Equation (39) yields the equation 
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( , ) ( ) ( , ) cosn
n S

g t S G S dS n tθ ζ θ ω
∞

=

  =  
  

∑ ∫  (41) 

 

The expression inside the curly brackets represents the time-dependent radiation pattern 

that can be denoted as ( )nb θ  [14] 

 
0

0 0 0( ) ( ) ( , )n n
S

b S G S dSθ ζ θ= ∫  (42) 
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From the derivation of ( )nb θ , one can conclude that harmonic coefficients 0( )n Sζ  give 

rise to the corresponding Fourier coefficients, ( )nb θ , in Equation (37).  

 By examining Equation (37), it can be seen that the time varying radiation pattern 

can be written as the superposition of the time- and angle-dependent harmonic 

coefficients that are tagged with a different frequency. Due to this independent nature of 

0ω  harmonics, each term in Equation (37) provides a way to detect the target 

independently. This can be used as a direct indication of the presence and the strength of 

a target in the direction associated with the beam pointing in that direction when pencil 

beams are used. This characteristic is of importance for electronic scanning.  

1. Time Domain Array Theory  

In order to understand electronic scanning using time domain antennas, consider a 

continuously excited linear array. Assume that 2 1N +  pencil beams are desired from an 

array of length 02l  and beams are spaced angularly by 0θ  [1]. In order to accomplish this, 

let  

 0sin( sin )( )
sinn n
klb A θθ

θ
=  (43) 

 

which corresponds to a pencil beam directed at the boresight of the antenna ( )0θ =  . In 

order to steer the pencil beams, it is required to introduce a phase shift that is analogous 

to the beam steering of the array. Therefore, for each pencil beam, a scan angle 0θ  is 

introduced to produce the aforementioned phase shift. Equation (43) can be written as 

 [ ]
[ ]

0 0

0

sin( sin sin )
( )

sin sinn n

kl
b A

θ θ
θ

θ θ
−

=
−

 (44) 

 

From Equation (37) the time varying radiation pattern can be extracted as  

 0
0

( , ) ( ) cos j t
n

n
g t b n t e ωθ θ ω

∞

=

 =  
 
∑  (45) 
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Using Equation (44) and Euler’s identity for 2 1N +  pencil beams, Equation (45) can be 

rewritten as [1]  

 0( )0 0

0

sin[ ( )]( , )
N

j n t

n N

kl v nvg t e
v nv

ω ωθ +

=−

−
=

−∑  (46) 

 

where ( , )g tθ   =  desired time varying complex pattern 

 0ω        =   fundamental modulation frequency 

 v  =  sinθ  

 0v  =  0sinθ  (scan angle) 

The time varying pattern given in Equation (46) demonstrates the characteristics 

of a non-scanning antenna, which can detect and locate targets over a wide angular region 

through the 2N+1 pencil beams separated by 0θ . This is an extremely useful 

characteristic for an antenna in radar applications. Here, 2 1N +  beams define the angular 

coverage while 0v  provides a means for detection accuracy. Equation (46) is basically the 

superposition of the 2 1N +  pencil beams each tagged with a different frequency. As n  

changes, the harmonic frequency changes and the linear array generates a beam whose 

direction is determined by the scan angle 0θ . In addition, the second term in the equation 

tags the beams with different frequencies. Therefore, a target in the vicinity of the angular 

direction 0nv  is directly associated with the frequency 0nω . From another viewpoint, 

since the Fourier transform of a sine wave gives two Dirac delta functions at the same 

frequency with opposite signs in the frequency spectrum, Equation (46) represents a 

frequency spectrum in which the upper and lower sideband magnitudes indicate the 

strength of the targets in the associated directions. This concept is illustrated in Figure 11. 
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Figure 11.   Time Domain Electronic Scanning (After [1]) 

Equation (46) presents the pattern of the array. From antenna theory, it is well 

known that an inverse Fourier transform of the far-field pattern gives the current 

distribution of the antenna. Therefore, one can apply the Fourier integral to the complex 

pattern given in Equation (46). By applying the Fourier integral to the aperture 

distribution, the following is obtained [1]: 

 0 0( )( , )
N

j kv nx n t

n N
f x t e ω− −

=−

= ∑  (47) 

Equation (47) can be written as  

Frequency Representation 
 

ω ω+Nω0  0Nω ω−

Spatial Representation 
 

ω+2ω0 

ω+ω0 
ω ω-ω0 

ω-2ω0 

ω+Nω0 
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θ = - Nv0 θ = Nv0 

θ = 0 

Plane of Array 
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 0 0 0 0

1
( ) ( )

1
( , ) 1

N
j kv nx n t j kv nx n t

n N n
f x t e eω ω

−
− − − −

=− =

= + +∑ ∑  (48) 

 

Changing the sign of the index and the exponent, Equation (48) becomes 

 0 0 0 0( ) ( )

1 1
( , ) 1

N N
j kv nx n t j kv nx n t

n n
f x t e eω ω− − −

= =

= + +∑ ∑  (49) 

 

Equation (49) can be rewritten as 

 ( )0 0
1

( , ) 1 2 cos
N

n
f x t n kv x tω

=

= + −  ∑  (50) 

 

where Euler’s trigonometric identity 

 ( )1cos
2

j je eθ θθ −= +  (51) 

 
is used. 

Equation (50) can be thought of as a series of travelling amplitude waves moving 

from left to right along the array with the same speed. Because of the equality of these 

wave amplitudes, the complete sum resembles a pulse travelling across the array. It can 

be seen that when N tends to infinity, the traveling pulse becomes a Dirac delta function.  

 An examination of Equation (50) reveals that in order to realize the pattern given 

in Equation (46) and depicted in Figure 11, the linear array must be excited progressively 

a small portion at a time. From this viewpoint, it will be considered that the linear array is 

excited with a rectangular pulse travelling across the array, to see whether it produces the 

complex pattern given in Figure 11. For this purpose, an array of N  elements, where 

each element is excited for a particular period of time, will be assumed. This is equivalent 

to on-off switching of antenna elements in sequence. Each antenna element is excited for 

/T N seconds and then turned off, starting from the leftmost element and moving in time 

to the rightmost element. This excitation cycle is repeated for every T  seconds where T  

represents the period of the excitation. The generated pulse travels all the array elements 

in T  seconds, and then returns back to the leftmost element of the array. Switching an 

antenna element on for a particular time and then turning it off generates a rectangular-
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shaped pulse modulated with the carrier frequency, which is similar to the on-off keying 

(OOK) or amplitude shift keying (ASK) in communication theory. This concept is 

illustrated in Figure 12. 

 

 

Figure 12.   Excitation of the Time Domain Scanned Array 

Each element is turned on with excitation current amplitude mA  during the time 

defined by  

 ( 1)mT Tt m
N N

≤ ≤ +  (52) 

 

where m is the symbol used for sequence numbering the array elements (i.e., 

0,1, 2,3,..., 1m N= − ) as it is illustrated in Figure 12. Using Equation (52) the aperture 

excitation can be written as a piecewise function as follows: 

   

 
,   ( 1)

( )
0,      else

m
mT TA t m

a t N N
 ≤ ≤ += 


 (53) 

 

where ( )a t  is the aperture excitation. The resulting pattern from the excitation given in 

Equation (45) can be written in the form of  

 ( , ) ( ) j t
mg t h e ωθ θ=  (54) 

 
 

0 1 2 3 4 1N −  

Am 

x 

Travelling pulse 
across the array 

L = 2l0 

d 
…….. 
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where  

 sin( ) jmkd
m mh A e θθ =  (55) 

 

Therefore, Equation (54) can be rewritten as 

 sin( , ) jmkd j t
mg t A e eθ ωθ =  (56) 

 

The time delay for a pulse to arrive to the observation point at the far field has to 

be taken into consideration. In Chapter II, it was shown that due to the spacing between 

antenna elements, each wave radiated from an element has to travel a distance of sind θ  

compared to the wave radiated from the adjacent element in the direction of θ , where the 

observation point is located. This path length difference also introduces a time delay for 

the signal to arrive at the observation point. The time delay experienced by waves can be 

written in general for all elements by simply subtracting the time delay from both sides of 

Equation (52), and thus it becomes [1] 

 sin     ( 1) sinmT md T mdt m
N c N c

θ θ− ≤ ≤ + −  (57) 

 

where d is the interelement spacing along the array. 

 Equation (54) shows the periodicity of the complex pattern since the angle- 

dependent function is multiplied with a periodic complex signal j te ω . From Fourier 

analysis, it is well known that any periodic function can be expanded into its Fourier 

coefficients by simply taking the Fourier series. The Fourier series of a periodic function 

can be written as [16] 

 ( )02 /( ) j T qt
q

q
x t c e π

∞

=−∞

= ∑  (58) 

 

where qc  represents the Fourier coefficients and 0T  is the fundamental period of the 

signal. Equation (58) is also known as the Fourier synthesis equation in which the signal  
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is reconstructed from the harmonics of the complex sinusoidal wave with Fourier 

coefficient weighting. The complex Fourier coefficients can be found using the following 

Fourier analysis equation [16]  

 
0

0(2 / )

0 0

1 ( )
T

j T qt
qc x t e dt

T
π−= ∫  (59) 

 

However, Equation (54) is a function of two variables, namely angle (θ) and time (t). For 

this reason, the Fourier series of a two-variable function is needed. Using a similar 

approach as in the one-dimensional case and applying Equations (58) and (59) to 

Equation (56) results in the transform pair [1] 

 ( )2 /( , ) ( ) j T ntj t
n

n
g t f e e πωθ θ

∞

=−∞

= ∑  (60) 

 

and  

 ( )2 /

0

1( ) ( , )
T

j T ntj t
nf g t e e dt

T
πωθ θ −−= ∫  (61) 

 

where ( )nf θ  are simply equal to ( )nb θ , which are the pencil beams directed in different 

angles defined in Equation (44). Substituting Equations (54), (55) and (56) gives the 

result  

 
1 ( 1)( / ) ( / )sinsin (2 / )

( / ) ( / )sin
0

1( )
N m T N md cjkmd j nt T

n m mT N md c
m

f A e e dt
T

θθ π

θ
θ

− + − −

−
=

= ∑ ∫  (62) 

 

After the integration term-by-term, Equation (62) reduces to 

 
( )0 2sin1

0

sin
( ) ( 1)

n njm dN
c Nn

n m
m

n
Nf A e

n

ω ω πθ
π

θ
π

  + −−   
   

=

 
 
 = − ∑  (63) 
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The summation in Equation (63) assumes the form of the conventional array factor 

discussed in Chapter II. The maximum value of the array factor occurs when the 

exponent is equal to zero; hence, setting the exponent to zero  

 0
2( ) sin 0nk nk d
N
πθ+ − =  (64) 

 

where k
c
ω

=  and 0
0k

c
ω

= . Then, the angle at which the array factor is maximized can be 

found from Equation (64) as 

 
0

2sin
( )

n
Nd k nk

πθ =
+

 (65) 

 

Since 0k depends on 0ω , and it is assumed that 0ω ω , one can conclude that 0k k . 

Therefore, the scan angle is related by the following:  

 2sin n
Nkd
πθ =  (66) 

 

Equation (66) shows that the direction of a beam is associated with the Fourier coefficient 

number or frequency mode number n . This is particularly important because it allows the 

beams to be associated with their corresponding frequencies.  

 Now for the sake of simplicity, assume that the array is excited with uniform 

excitation (i.e., 1mA = ) and the spacing between the array elements is a half wavelength. 

Then, Equation (63) can be written as [1] 

 ( )
1

0

sin
( ) ( 1) (1) n

N
j mn

n
m

n
Nf en

N

γ γ

π

θ π

−
+

=

 
 
 = − ∑  (67) 

 
where the exponent 

 ( )0 2sinn

n nd
c N

ω ω πγ γ θ
+ 

+ = − 
 

 (68) 

 

can be simplified to  
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 0
2sin sinn kd nk d n
N
πγ γ θ θ+ = + −  (69) 

 

Combining the terms dependent on n, Equation (69) becomes 

 0
2sin sinn kd n k d
N
πγ γ θ θ + = + − 

 
 (70) 

 

Recalling the earlier approximation that 0k k , one can write Equation (70) as 

 2sinn kd n
N
πγ γ θ+ ≈ −  (71) 

 

The wave number k  can be expressed as 2k π
λ

=  and the interelement spacing is 

assumed to be half wavelength, namely
2

d λ
= . In Equation (71), the product kd  reduces 

to π  and Equation (71) can be written as 

 2sinn n
N
πγ γ π θ+ ≈ −  (72) 

 

In Equation (67), the summation is a geometric series and similar to the derivation of the 

array factor of a uniform linear antenna array and it can be written as a Dirichlet function. 

Therefore, Equation (67) reduces to  

 ( ) ( )1
2

( )sinsin
2( ) 1

sin
2

n

n
Njn

n
n

Nn
Nf en

N

γ γ

γ γπ

θ π γ γ

−
+

+  
      = −

+ 
  

 (73) 

 

Substituting Equation (72) into Equation (73) results in as the following: 

 

 ( )
1 2sin

2

2sin sin (sin )
2( ) 1

2sin sin
2

Nj nn N
n

n N n
N Nf en n

N N

ππ θ

π π θ
θ π π θ

−  − 
 

   −      = −
  −    

 (74) 
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The exponent in Equation (74) can be written as  

 1 2 1 1 2 1sin sin sin
2 2 2 2

N n N N n N n
N N
π ππ θ π θ π θ π− − − − − = − ≈ − 

 
 (75) 

 

and since 1jne π = ± , 

 ( ) ( )
1 sin

2

2sin sin (sin )
21

2sin sin
2

Njn
n

n N n
N Nf en n

N N

π θ

π π θ
θ π π θ

−

    −        = −  
   −      

 (76) 

 

The last factor in the curly brackets is the array factor that has the form of ( )
( )

sin
sin

Nς
ς

. 

Substituting Equation (76) into Equation (60) gives the complete complex pattern as  

 ( ) ( ) ( )0

1 sin
2

2sin sin (sin )
2, 1    

2sin sin
2

Njn j n t

n

n N n
N Ng t e en n

N N

π θ ω ω

π π θ
θ π π θ

−∞
+

=−∞

   −      = −
  −    

∑  (77) 

 

From the array factor, it is clearly seen that the phase shift required to steer the 

beam to the desired directions is defined by [1]  

 2sin n
N

θ =  (78) 

 

Equation (78) explicitly shows the relation among the number of elements, number of 

beams, and the scan angle θ . In order to understand how some antenna parameters affect 

the system capabilities, suppose that fifty beams are desired from 25−   to 25  and each 

beam is separated by one degree [1]. Using Equation (78), where 25n =  and 50θ =  , 

forces the number of elements to be 118. Therefore, to realize the requirements given 

above, one must use 118 antenna elements. In this way, one can get the desired 

beamwidth of one degree, which plays a key role in the angular resolution of radar.  
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2. Application of Formulas 

In Section A.1, the theory of a time modulated antenna array to achieve electronic 

scanning was discussed. In order to visualize the theory, MATLAB programming 

language is used because of its convenient easy-to-use plotting functions.  

In this section, Equations (76) and (77), which are the closed form equations 

derived for a rectangular pulse excitation, are used to illustrate the theory of a time 

modulated antenna and electronic scanning. Next, to compare the results with those of the 

closed form expressions, theory is implemented via MATLAB programming language 

step-by-step. This step-by-step procedure also lets the user to investigate the effects of 

amplitude tapering. MATLAB scripts, which are used to implement theory, are given in 

the appendix of this thesis.  

Due to the memory limitations of the computers used in this study (Microsoft 

Windows with 4 GB of RAM) and the time elapsed to run the MATLAB scripts, the 

number of beams desired was limited to twenty. Therefore, suppose that twenty beams 

are desired over angles from 10−   to 10  with the beams separated by one degree. From 

Equation (78), the number of antenna elements required can be readily found, and it turns 

out to be 115 elements for these particular requirements. Implementing Equation (76) in 

MATLAB gives the pattern plots displayed in Figure 13.  

Figure 14 is the zoomed-in version of Figure 13 in which the sidelobe level, angle 

separation, and the number of beams generated can be seen more clearly. This plot shows 

that Equation (72) generates the desired number of simultaneous pencil beams, which are 

separated approximately by one degree. If the desired number of beams were set to 180 

with angle separation of one degree, then it would provide a way to cover a wide range of 

directions in terms of angles. In this simulation, the modulation frequency was set to 10 

kHz and the carrier frequency was 10 MHz. Since each beam is tagged with a different 

frequency, it provides a means of detecting targets simultaneously, which are also tagged 

with the frequency associated with the beam. In addition, note that the sidelobe level is 

approximately 13.3 dB down from the main lobe as expected for a uniformly excited 

array.  
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Figure 13.   Multiple Beams from a Time Modulated Antenna with a Closed Form 
Expression 

 

Figure 14.   Multiple Beams from a Time Modulated Antenna with a Closed Form 
Expression (Zoomed in) 
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Figures 13 and 14 only demonstrate the spatial dependence of the complex 

pattern, not the time-dependent pattern complex. To obtain a more detailed picture of the 

time varying pattern, Equation (77) is implemented in MATLAB. A carrier frequency of 

10 MHz and a modulation frequency of 10 kHz are used in order to satisfy the 

requirement for 0f f  along with the same requirements for the number of the beams 

and angle separation as mentioned previously. In the MATLAB script, after computation 

of the time-dependent pattern, a fast Fourier transform (FFT) is implemented and a mesh 

plot of the pattern vs. frequency angle is plotted. Figures 15 and 16 depict the plots of the 

time varying pattern in the frequency domain with linear units and dB, respectively.  

 

 

Figure 15.   Plot of the Time Varying Complex Pattern vs. Frequency and Angle θ in 
Linear Units 
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Figure 16.   Plot of the Time Varying Complex Pattern vs. Frequency and Angle θ in 

dB 

Figures 15 and 16 show that each beam generated has a different scan angle and is 

also tagged with a different frequency value that is determined by the modulation 

frequency 0f  and its harmonics. Therefore, this implementation presents a FDA as a time 

modulated array that creates multiple beams. Figure 17, which is top view of Figure 16, 

delineates the frequency increment as a linearly increasing line and clearly reveals the 

connection between the scan angle and frequency tagging. As seen from Figure 17, the 

first beam has a scan angle of 10−   and is associated with 9.9 MHz frequency, and as the 

beam number increases, the frequency associated with the beam increases by 10 kHz as 

expected. In Figure 17, the frequencies associated with the beams appear to be slightly 

shifted due to the limitations of the computer’s RAM and insufficient data points.  
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Figure 17.   Top View of the Time Varying Complex Pattern vs. Frequency and Angle 
θ in dB 

In order to see the effects of amplitude tapering, the steps followed to derive the 

closed form equations must be implemented in MATLAB. Closed form equations are 

valid only for uniform excitation where all the current amplitudes are equal to one. In 

uniform excitation of an array, the highest sidelobe is 13.26 dB down from the main 

peak. One can use the amplitude tapering to reduce the sidelobe levels; however, there is 

a trade-off between the reduced sidelobe level and beamwidth. As the sidelobe level 

decreases, the main beam broadens. Therefore, an antenna designer should carefully 

decide between the desired sidelobe level and the beamwidth that defines both the gain 

and the angular resolution of a radar. 

Figures 18 and 19 (zoomed-in version) show the result obtained from MATLAB 

by following the same procedure to derive the closed form equations. The only difference 

between Figure 13 and 18 is the way they are computed. Figure 13 was plotted with a 

closed form equation, which is in fact an approximation of Figure 18. The closed form 

solution was derived based on the assumption of a uniform array. On the other hand, 

Figure 18 is the more generalized result and is derived based on a Fourier series 
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expansion of the complex pattern where on-off switching of antenna elements is used as 

discussed in the theory section. In addition, note that the sidelobe level for the uniform 

excitation is approximately the same theoretical value. A comparison of Figures 13 and 

18 show minor differences. However, in general the same pattern and values are obtained 

for modeling of a uniformly excited array from both the closed form equations and the 

Fourier series expansion.  

 

Figure 18.   Fourier Series Expansion of the Complex Pattern 

 

Figure 19.   Fourier Series Expansion of the Complex Pattern (Zoomed in) 
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Similarly, Figures 20 and 21 demonstrate the same characteristics as Figures 16 

and 17. The slight frequency shift problem the author had in Figure 17 is eliminated in 

Figure 20 due to the step-by-step implementation of the formulas. 

 

Figure 20.   Plot of  the Time Varying Complex Pattern vs. Frequency and Angle θ in 
dB Using Fourier Series Expansion 

 
Figure 21.   Top View of the Time Varying Complex Pattern vs. Frequency and Angle 

θ in dB Using Fourier Series Expansion 
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In Figure 18 through Figure 21, the complex pattern is depicted with uniform 

excitation; in other words, all current amplitudes for all elements are equal to one. 

However, as mentioned before, amplitude tapering can be used to reduce the sidelobe 

levels. The greater the taper of the aperture illumination as it approaches the edges of the 

antenna aperture the lower the sidelobe level will be, but at the cost of a wider beamwidth 

and a lower maximum gain [3]. Widely used amplitude aperture distribution types and 

radiation pattern characteristics produced by these distributions are given in Table 1. 

 
 

Type of Distribution,  
|z| <1 

Relative Gain Half-power 
beamwidth, 

degree 

Sidelobe Level 

Uniform, A(z)=1 1 51λ/D 13.2 
Cosine, 

( ) cos ( / 2)nA z zπ=     

n = 0 1 51λ/D 13.2 
n = 1 0.810 69λ/D 23 
n = 2 0.667 83λ/D 32 
n = 3 0.575 95λ/D 40 
n = 4 0.515 111λ/D 48 

Parabolic, 
( ) ( ) 21 1A z z= − −∆     

1.0∆ =  1 51λ/D 13.2 
0.8∆ =  0.994 53λ/D 15.8 
0.5∆ =  0.970 56λ/D 17.1 
0∆ =  0.833 66λ/D 20.6 

Triangular, 
( ) 1A z z= −  0.75 73λ/D 26.4 

Circular, 
( ) 21A z z= −  0.865 58.5λ/D 17.6 

Cosine-squared-plus- 
pedestal    

( )20.33 0.66cos / 2zπ+  0.88 63λ/D 25.7 

( )20.008 0.92cos / 2zπ+  0.74 76.5λ/D 42.8 

Table 1.   Various Aperture Distribution Types (After [3]) 
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As the last step of the implementation, a radiation complex pattern is plotted using 

cosine aperture distribution, where n is chosen to be one with cosine-squared-plus- 

pedestal aperture excitation in order to check the validity of the MATLAB code. First, a 

cosine aperture distribution is used for the 115 elements in a linear array to generate 20 

beams with one-degree separation. The cosine aperture excitation is shown in Figure 22. 

The Fourier series expansion of the time varying pattern due to the cosine aperture 

excitation is given in Figure 23. It is clearly seen from Figure 23 that the peak sidelobe 

level is approximately 23 dB less than the main beam as expected by theory according to 

Table 1. Also note that the beams are no longer as narrow as in the uniform excitation 

case; in other words, reduced sidelobe levels are realized at the expense of broadened 

beams.  

 

 

Figure 22.   Cosine Aperture Excitation ( )( )cos ( / 2)nA z zπ= for 115 Elements, 1n =  
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Figure 23.   Radiation Pattern of a Time Modulated Array Where the Excitation is a 

Cosine Function 

Lastly, a cosine-squared-plus-pedestal aperture excitation is used where the 

excitation is given by ( )20.33 0.66cos / 2zπ+  and is illustrated in Figure 24. The 

resulting pattern due to cosine-squared-on-a-pedestal excitation is shown in Figure 25. 

The results match with the theoretical values given in Table 1 as expected, and sidelobe 

level appears to be approximately 26 dB down from the main peak level.  
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Figure 24.   Cosine-squared-on-a-pedestal Aperture Excitation 
( )( )20.33 cos ( / 2)A z zπ= +  for 115 Elements, 1n =  

 

Figure 25.   Radiation Pattern of a Time Modulated Array Where the Excitation is a 
Cosine-squared-on-a-pedestal Function 
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In this chapter, the theory behind time modulated antennas and how they can be 

used in radar applications to generate a quasi-electronic scanning mechanism was 

discussed. Since all pencil beams appear simultaneously, it provides a way to achieve 

wide-angle coverage. In addition, it should be noted that frequency tagging of beams 

creates the distinct advantage of finding the direction of a target easily. The analytical 

theory was supported by MATLAB programming to illustrate the effects of amplitude 

tapering.  

The concept given in this chapter in essence shows some characteristics of a 

frequency diverse array as a time modulated array to decrease sidelobe levels and create 

multiple beams. In the next chapter, the frequency diverse array concepts, which 

basically rely on the feeding of each antenna in an array structure with a progressive 

incremental (or decremental) frequency shift, will be introduced [8].  
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IV. FREQUENCY DIVERSE ARRAYS 

A. CONCEPT 

A frequency diverse array is a new and novel electronic scanning technique. The 

elements of the array can be either excited with the same waveform or different types of 

waveforms. In this thesis, for simplicity the same waveform use will be assumed. The 

most important difference of a frequency diverse array from a conventional array is that a 

small amount of frequency increment compared to the carrier frequency is used across 

the array elements instead of a linear phase shift. Use of frequency increment generates a 

far electric field pattern that is a function of range, time, and angle. Range-dependent 

beamforming is of importance because one can get local maxima at different ranges, and 

this can be used for multiple target detection with the use of advanced signal processing 

techniques, although the range ambiguities might be a problem.  

1. Theory 

Conventional array theory was discussed in Chapter II in detail. A frequency 

diverse array is particularly different from a conventional array due to the use of 

frequency increment across the array elements. In conventional arrays, it is assumed that 

the waveform radiated by the array elements is identical, excluding the current 

amplitudes and current phases. Recall that amplitude tapering reduces the sidelobe levels 

and progressive phase increment steers the main beam to the desired direction.  

Now, assume that the waveform radiated from each antenna element is identical 

with a frequency increment of f∆  Hz applied across the elements. In a conventional 

array (see Figure (26)), the phase shift due to the path length is defined by  

 2 cosdπψ θ
λ

=  (79) 

 

where angle θ  defines the direction of the target from the axis of the array. The concept 

of a frequency diverse array is illustrated in Figure 26. 
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Figure 26.   Frequency Diverse Linear Array Antenna Concept (After [8]) 

The phase of the signal arriving at element zero, which is located at the origin of 

the coordinate system depicted in Figure 26, is  

 

 0
0 0 0

22 fR R
c
ππψ

λ
= =  (80) 

 

where 0f  is the frequency of the waveform radiated from element zero and 0R  is the path 

length between the element and the far-field observation point. Similarly, the phase of the 

signal arriving at element one can be written as  

 

 
( )

( ) ( )

01
1 1 0

00 0 0
1

2 ( )2 cos

2 2 cos2 2 cos

f ff R R d
c c

f R f df R f d
c c c c

ππψ θ

π π θπ π θψ

+ ∆
= = −

∆ ∆
= + − −

 (81) 

 

where the approximation 1 0 ( 1) cosNR R N d θ− ≈ − −  is used from array theory [17].  
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The phase difference between the signals arriving at element zero and element 

one results in  

 

( ) ( )

( ) ( )

00 0 0 0
0 1 0

00

2 2 cos2 2 2 cos

2 cos 22 cos

f R f df f R f dR
c c c c c

f d f Rf d
c c c

π π θπ π π θψ ψ

π θ ππ θψ

∆ ∆ 
− = − + − − 

 
∆ ∆

∆ = + −  (82) 

The first term in Equation (82) is simply the conventional array factor seen 

frequently in array theory where 0 1f
c λ
= , assuming that the waves are radiating in free 

space. The last term is of importance because it shows that the radiation pattern of the 

array depends on the range and the frequency increment. Frequency scanning and 

frequency diverse arrays have similarities in terms of frequency diversity; however, 

frequency scanned arrays use the frequency increment as a function of time for all 

elements, while frequency diverse arrays use the frequency increment at the discrete 

points of the aperture [17]. 

The new terms introduced in Equation (82) generate an apparent angle 

contradictory to the scan angle that one normally sees. This apparent scan angle can be 

derived using the same approach used in Chapter II. Due to the change in the angle, 

progressive phase shift must be defined in terms of the apparent angle as follows [6]: 

 

 2 cos adπψ θ
λ

∆ =  (83) 

 
 
where aθ  is the apparent angle. Equating Equation (83) to Equation (82) results in  
 

 ( ) ( ) 00 2 cos 22 cos2 cos a

f d f Rf df d
c c c c

π θ ππ θπψ θ
∆ ∆

∆ = = + −  (84) 

 
Solving Equation (84) for the angle yields the following [6]: 
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0 0

0 0

cos coscos

cos cosarccos

a

a

f fRf
f f fd

f fRf
f f fd

θ θθ

θ θθ

∆∆
= + −

 ∆∆
= + − 

 

 (85) 

 

From array antenna theory discussed in Chapter II, it is known that a progressive 

phase shift of ψ∆  across the elements must be applied for scanning. In addition to this, a 

scan angle 0θ  must be defined to steer the main beam to desired direction. Equation (84) 

defines the amount of phase shift for a FDA, and the array factor can be calculated 

readily using a similar approach. Assume the desire is to steer the main beam to 

broadside where 0 90θ =  . This means that there is no phase shift due to the path length 

and the first term in Equation (84) vanishes. Additionally, assume that the frequency 

increment across the array is not applied (i.e., 0f∆ = ) and uniform excitation is used. It 

can be clearly seen that when 0 0θ =  and 0f∆ = , the interelement phase shift becomes 

zero ( 0ψ∆ = ). This is nothing more than a uniform linear array. If the carrier frequency 

is set to 100 kHz and ten antenna elements are used, where the spacing between antenna 

elements is 
2

d λ
= , the pattern shown in Figure 27 is obtained when 0 0θ =  and 0f∆ = .  
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Figure 27.   Array Pattern when no Frequency Increment is Applied (After [6])  

If the frequency increment f∆  is chosen to be 500 Hz for the same array 

configuration, the second and third terms become nonzero and the array pattern is 

affected by these terms, as demonstrated by the pattern shown in Figure 28.  

 

Figure 28.   Array Pattern when a Frequency Increment of 500f∆ =  Hz is Applied 
(After [6]) 
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Figure 28 shows that the array pattern is not only a function of time, but also a 

function of angle and range. As shown, the array pattern reaches its maximum at different 

ranges and angles. This leads to the definition of the apparent angle because the main 

beam is no longer directed at a fixed scan angle. This flexible beam scan option can 

decrease the effects of multipath and be used in synthethic aperture radar (SAR) and 

ground moving target indicator (GMTI) as discussed in [6]. The pattern shown is 

interesting from the types of new radar operations that it might support. For example, the 

pattern might help to combat glint, which has degraded patterns at specific angles. There 

might also be applications in electronic warfare where a fast-moving target might egress 

from air defense along a diagonal line.  The pattern in Figure 28 has the main peak 

varying in both range and angle, so diagonal tracking might be enhanced. 

The array patterns given in Figures 27 and 28 are the spatial patterns. However, to 

see the time varying far electric field, one should define the electric fields radiated from 

the array elements in terms of time and frequency increment f∆ . Now, assume that there 

is an array of N elements where elements are separated by a distance of d  meters and 

excited with a frequency shift of f∆ . In Chapter II, when array antenna theory was 

introduced, phasor notation was used and the time-dependent term j te ω  was omitted. In 

this chapter, time dependency is taken into account. Therefore, the electric field radiated 

from each element in the far field can be rewritten using Equation (11) as  

 ( ) ( )
1

0
 ,  n n n

N
j t k Rn

e
n n

aE e f
R

ω θ φ
−

−

=

=∑  (86) 

 

where  0n nω ω ω= + ∆ , 0nk k n k= + ∆ , 2k
c k
ω π∆

∆ = =
∆

, 0 cosnR R nd θ≈ − , and ( ),ef θ φ  

is the element factor, which is in fact a function of frequency. Substituting these 

equations in Equation (86) yields 

 ( ) ( ) ( )0 0
1

0
0

  n
N

j n t j k n k Rn
e

n n

aE f n e e
R

ω ωω ω
−

+ ∆ − + ∆

=

= + ∆∑  (87) 
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where 0
0k

c
ω

= . In this equation, current excitations of all elements are assumed to be in 

phase coherence. Due to this reason, the nje ψ term is dropped from Equation (11). The 

1

nR
 term in Equation (87) is the fall-off factor of the far electric field due to range. In the 

far field, the distances from the individual array elements to the observation point can be 

considered as equal, and this term can be pulled out of the summation. However, the 

same assumption cannot be made for the phase associated with the nR  term in the 

exponent. A small change in phase can generate a big change in radiation pattern. 

However, an approximation can be made using simple trigonometry: 0 cosnR R nd θ≈ − . 

Taking into account all the approximations and assuming that the array is uniformly 

excited where 1na = , Equation (87) turns out to be 

 ( ) ( ) ( )( )0 0 0
1

cos
0

00

1   
N

j n t j k n k R nd
e

n
E f n e e

R
ω ω θω ω

−
+ ∆ − + ∆ −

=

= + ∆∑  (88) 

and  

 ( ) ( ) ( )2
0 0 0 00

1 cos cos
0

00

1   
N j k R k nd n kR n kdj n t

e
n

E f n e e
R

θ θω ωω ω
−

− − + ∆ −+ ∆

=

= + ∆∑  (89) 

 

Combining the terms dependent on n  yields 

 ( ) ( ) ( )0 0 0 0 0
1

cos cos
0

00

1   
N

j t k R jn k d kR nkd t
e

n
E f n e e

R
ω θ θ ωω ω

−
− −∆ + +∆

=

= + ∆∑  (90) 

Since ( )0 0 0j k Re ω +  does not depend on n , it can be pulled out of the summation and 

Equation (90) can be written as  

 ( ) ( ) ( )0 0 0 0 0
1

cos cos
0

00

1   
N

j t k R jn k d kR t n kd
e

n
E e f n e

R
ω θ ω θω ω

−
− −∆ +∆ + ∆

=

= + ∆∑  (91) 

 

The following assumptions can be made to further simplify Equation (91). First, it 

can be assumed that ( )1N d R−  , which means array length is much less than the 

distance to the far field in terms of spatial units. Second, using the fundamental frequency  
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diverse array constraint that 0ω ω∆ , the element factor 0( )ef nω ω+ ∆  can be 

approximated by ( )0ef ω . In the same fashion, ( ) 01N ω ω− ∆  . Lastly, in the amplitude 

sense, 0nR R≈ . 

Let the exponent in Equation (91) be named γ  and defined as 

 0 0cos cosk d kR t n kdγ θ ω θ= −∆ + ∆ + ∆  (92) 
 

The last term cosn kd θ∆  is much less than the other three terms in Equation (92). If this 

equation is examined, one can see that cosndt
c

θ
 , which means any observation time 

t  is much greater than the time delay experienced by the signals arriving at the different 

array elements. It is also obvious that the distance to the observation point 0R is much 

greater than the projection of the aperture length sinnd θ  in the direction of the 

observation point; in other words 0 cosR nd θ . Lastly, since 0ω ω∆ , then 

0 cos cosk d n kdθ θ∆ . Taking into consideration all the assumptions made, Equation 

(93) can be rewritten as 

 ( ) ( )0 0 0
1

0
00

1   
N

j t k R jn
e

n
E f e e

R
ω γω

−
−

=

= ∑  (93) 

 

where γ  is now  

 0 0cosk d kR tγ θ ω= −∆ + ∆  (94) 
 

In Equation (93), the summation 
1

0
 

N
jn

n
e γ

−

=
∑  is a geometric series and the result of 

this summation is equal to 1
1

j N

j

e
e

γ

γ

−
−

. Applying Euler’s identities to this result, Equation 

(93) can be written in the form of the Dirichlet function as 
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sin
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−
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 (95) 
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and the absolute value of the far electric field is  

 
0

sin
1 2  

sin
2

N

E
R

γ

γ

 
    =       
 

 (96) 

in which the element factor is omitted since the array pattern is the subject of this 

analysis.  

 

In Equation (93), the maximum field is obtained when the exponent in the 

summation is equal to zero or the multiple of 2π . This can be expressed mathematically 

as [6] 

 0 0cos 2 ,     0, 1, 2,...k d kR t m mγ θ ω π= −∆ + ∆ = = ± ±  (97) 
 

Now, if Equation (97) is solved for time t , the result is  

 0cos Rm dt
f f c

θ
λ

= + +
∆

 (98) 

 

It should be noted that Equation (98) shows the periodic nature of the array pattern in 

time where the fundamental period is 1
f∆

 and the range 0R  and angle θ  is fixed [17]. 

Similarly, solving for 0R  yields 

 0
cosd cR ct m

f f
θ

λ
= + −

∆ ∆
 (99) 

 

and it reveals that the array pattern is also a periodic function of range assuming both 

  and  tθ are fixed and where the fundamental period is c
f∆

 [17]. By the same token, 

solving for cosθ  results in  

 ( )0cos fm R ct
d fd
λθ ∆ = − − 

 
 (100) 
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The periodicity of the angle-dependent pattern is the inverse of the spacing in terms of 

wavelength, which corresponds to the location of the grating lobes [17]. It is clearly seen 

from Equation (97) that when only one parameter is fixed, there are an infinite number of 

solutions for the unfixed parameter couple. On the other hand, when two parameters are 

fixed, the periodicity of the array pattern is revealed depending on the unfixed variable.  

2. Periodicity of the Angle-, Range- and Time-dependent Patterns 

 The periodic nature of the array pattern on range, time and angle can be illustrated 

using MATLAB. First, the periodic nature of the pattern in time will be illustrated while 

keeping the range and angle θ  fixed. The parameters used for the simulation are 

operating frequency 0 10 MHzf = , interelement frequency increment 10 kHzf∆ = , and 

number of array elements 10N =  with a spacing of 
2
λ . Figure 29 shows the time- 

dependent array pattern at the range of 0 10 kmR =  and the broadside of the array where 

90θ =   and both parameters are fixed. It can be clearly seen that the time difference 

between the two peaks in Figure 29 is around 100 secµ  and it verifies that the period of 

the time-dependent array pattern is 100 secµ , which matches the result of Equation (98) 

where the period was found to be 1
f∆

. Since the frequency increment f∆ used for this 

simulation is 10 kHz, 1
f∆

 yield 100 secµ as expected. Figure 29 also reveals that the 

main beam of the antenna illuminates a target at a fixed range and angle ( )0 0,R θ  every 

1
f∆

 seconds. Therefore, the scanning speed can be increased by using a higher value of 

frequency increment without violating the fundamental frequency diverse array constraint 

0ω ω∆ .  
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Figure 29.   Time-dependent Array Pattern when the Range 0R  and Angle θ  are Fixed 

Using the same array configuration, the range-dependent array pattern can be 

plotted for a fixed time 233 sect µ=  and angle 90θ =  . 

Figure 30 shows the periodicity of the range-dependent array pattern. The period 

of the pattern is measured to be approximately 30 km from Figure 30, which is 

compatible with the period defined in Equation (99). The period in Equation (99) was 

found to be c
f∆

 and it yields 30 km for the array configuration used in MATLAB. 

Therefore, it can be concluded that for fixed time and angle values, the pattern reaches its 

peak value every 30 km for this configuration.  
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Figure 30.   Range-dependent Array Pattern when the Time t  and Angle θ  are Fixed. 

Lastly, the angle-dependent array pattern is plotted in MATLAB for a fixed value 

of time 233 sect µ=  and range 0 10 kmR = . The resulting plots are given in Figure 31.  
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Figure 31.   Angle-dependent Array Pattern when the Range 0R  and Time t  are Fixed 

Based on Figure 31, the period of the angle-dependent pattern turns out to be two. 

In Equation (100) it was found to be 
d
λ  radians, which is exactly the same value where 

2
d λ
= . The locations of the peaks (excluding those at zero radians) correspond to the 

grating lobes that are not in the visible region of the antenna. 

The patterns as a function of time, angle and range modulation have the same 

functional shape as shown in Figures 29, 30 and 31. Taking all these figures into 

consideration, it can be concluded that for an array with uniform distribution in amplitude 

and phase, all parameters have the same type of modulation by setting the other 

parameters constant.  
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B. SIMULATION OF A FREQUENCY DIVERSE ARRAY  

1. Simulation of a FDA 

In Section A of this chapter, the theory of a frequency diverse array was 

presented. Next, the simulation of a general FDA with isotropic radiators and a FDA 

above a perfectly conducting plane, where half-wave dipoles are used, is presented. 

Consider a linear array of ten elements along the z-axis. The array coordinate 

system is the same as defined in Figure 26. The interelement spacing is 
2

d λ
=  and the 

frequency increment 10 kHzf∆ = + . To simulate this array configuration and plot the 

resulting radiation pattern, MATLAB is used. In these patterns the free space attenuation 

due to the range, in other words 
0

1
R

, is suppressed to clearly see the pattern’s local 

maxima. A binomial distribution is used to excite the array elements at the lowest 

possible sidelobe levels. At a fixed time of 200 sect µ= , the resulting pattern is given in 

Figure 32. In this plot, only the 0x > half-space is shown.  

 

 
Figure 32.   Normalized Radiation Pattern of the FDA for Time Instance 200 sect µ=  
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As seen from Figure 32, the radiation pattern of the FDA reaches its maxima at all 

angles but different ranges [8]. This is what was expected according to Equation (92), 

where it was concluded that for a fixed time parameter there would be an infinite number 

of solutions for the other pair of parameters; in this case the range and the angle pair 

( )0 0,R θ . Next, the same pattern is plotted at the time instances of 225 sect µ=  and 

250 sect µ= . The resulting patterns are depicted in Figures 33 and 34, respectively. 

 
Figure 33.   Normalized Radiation Pattern of the FDA for Time Instance 225 sect µ=  

 
Figure 34.   Normalized Radiation Pattern of the FDA for Time Instance 250 sect µ=  
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Figures 32, 33 and 34 show that for a frequency increment, the time varying 

radiation pattern rotates in angle in the counterclockwise direction. If frequency 

decrement is applied instead of frequency increment, the pattern rotates in angle in a 

clockwise fashion. Figures 35 and 36 reveal the clockwise rotation of the radiation 

pattern where the time instances of 200 sect µ=  and 250 sect µ=  are used.  

 
Figure 35.   Normalized Radiation Pattern of the FDA for Time Instance 200 sect µ=  

 

Figure 36.   Normalized Radiation Pattern of the FDA for Time Instance 250 sect µ=  
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Similarly, for a fixed range of 0 30 kmR = at 200 sect µ=  and 225 sect µ=  the 

normalized radiation pattern can be plotted on a polar plot to see the angle scanning of 

the array. It should be noted that the free space attenuation factor 
0

1
R

is again suppressed 

for these plots. The resulting polar plots are shown in Figures 37 and 38.  

 
Figure 37.   Polar Plot of the Normalized Radiation Pattern at Range 0 30 kmR =  and 

200 sect µ=  for Angle θ  where 0φ =   

 
Figure 38.   Polar Plot of the Normalized Radiation Pattern at Range 0 30 kmR =  and 

225 sect µ=  for Angle θ  where 0φ =   
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It is clearly seen from Figures 37 and 38 that the time varying pattern scans all angles in a 

counterclockwise fashion for frequency increment as expected. For a frequency 

decrement, the pattern scans all angles in a clockwise direction as seen in Figures 39 and 

40. 

 
Figure 39.   Polar Plot of the Normalized Radiation Pattern at Range 0 30 kmR =  and 

200 sect µ= for Frequency Decrement where 0φ =   

 
Figure 40.   Polar Plot of the Normalized Radiation Pattern at Range 0 30 kmR =  and 

225 sect µ= for Frequency Decrement where 0φ =   
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The time varying patterns plotted for this simulation repeat every 1
f∆

 seconds due to the 

periodicity of the pattern. In [8], the angular velocity of the pattern is defined as  

 

 
sin

d f
ddt

θ

θ
λ

∆
=
 
 
 

 (101) 

 

and 180 degrees is swept at a time interval of  

 

 2dt
fλ

∆ =
∆

 (102) 

 

2. Simulation of FDA Above a Ground Plane  

In the final section of this chapter, the frequency diverse array of y directed 

dipoles above a perfectly conducting plane is examined. As mentioned previously, an 

array above a ground plane of infinite extent can be approximated with use of image 

theory. Even though in reality an infinite, perfectly conducting ground plane does not 

exist, the use of image theory still provides a useful means of determining the radiated 

field from an array above a ground plane of finite extent. In this simulation frequency, the 

diverse array is placed at a height of 0.25h λ=  and the half-wave dipole Equations (35) 

and (36) are used where the current flows in the y-axis. The observation point is assumed 

to be in the x-z plane (i.e., 0φ =   in Equation (31)). The resulting pattern is computed 

according to the principle of pattern multiplication as given in Equation (34). Three 

different excitations in Table 1 and a binomial distribution are used in the simulation. 

First, uniform excitation is applied to ten array elements and the pattern is plotted for the 

time snapshots of 225 sect µ=  and 250 sect µ= . Figure 41 and 42 show two time 

snapshots obtained from MATLAB for uniform excitation. 
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Figure 41.   Radiation Pattern of a Linearly Excited FDA Above a Ground Plane 

( )225 sect µ=  

 

 
Figure 42.   Radiation Pattern of a Linearly Excited FDA Above a Ground Plane 

( )250 sect µ=  

The pattern still exhibits the same characteristics and rotates in the 

counterclockwise direction. However, the tangential electric field is zero at the ground 

plane, thus eliminating the beams at the end fire of the array. It is also seen that due to 

linear excitation, the sidelobe levels are high. This might be problematic for radar and 

cause false alarms due to the high sidelobe level.  
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Secondly, a cosine amplitude tapering is applied to the array. This excitation gives 

rise to the following plots in Figure 43 and 44.  

 
Figure 43.   Radiation Pattern of a Cosine Tapered FDA Above a Ground Plane 

( )225 sect µ=  

 
Figure 44.   Radiation Pattern of a Cosine Tapered FDA Above a Ground Plane 

( )250 sect µ=  

It is clearly seen that the sidelobes represented by the spirals around the main lobe 

spirals vanished and are at a level close to zero, which can be read from the colored bar. 

However, as expected the main beam is broadened and covers wider range than in 
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Figures 41 and 42. Again, due to the ground plane and destructive interference, the power 

of the main beam is decreased considerably close to angles 90±  .  

Next, a cosine-squared-on-a-pedestal excitation ( ) ( )( )20.33 0.66cos / 2A z zπ= +  

and binomial excitation, which is an extreme case where no sidelobes are generated, are 

used in the simulation. The resulting patterns for the cosine-squared taper are plotted 

against the range in the xz-plane in Figures 45 and 46.  

 
Figure 45.    Radiation Pattern of the FDA Above a Ground Plane Excited with a 

Cosine-squared-on-a-pedestal Excitation ( )225 sect µ=  

 
Figure 46.   Radiation Pattern of the FDA Above a Ground Plane Excited with a 

Cosine-squared-on-a-pedestal Excitation ( )250 sect µ=  
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Figures 47 and 48 show that when a binomial distribution is used for excitation of 

the elements, the main beam has the broadest width compared to the previous cases. 

However, the sidelobe level is zero. This is the tradeoff between ultra-low sidelobe level 

and the width of the main beam as seen from the figures. In these simulations, the number 

of elements used was ten ( )10N = .  

 
Figure 47.   Radiation Pattern of the FDA Above a Ground Plane Excited with 

Binomial Excitation ( )225 sect µ=  

 
Figure 48.   Radiation Pattern of the FDA Above a Ground Plane Excited with 

Binomial Excitation ( )250 sect µ=  
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If one increases the number of the elements, then the width and the range 

coverage of the main beam can be decreased. Figure 49 shows the reduction in width of 

the main beam when the number of the elements is increased to fifty ( )50N =  with a 

cosine amplitude excitation at time 250 sect µ= . The result can be verified by a 

comparison with Figure 44.  

 

 
Figure 49.   Radiation Pattern of a Cosine Tapered FDA Above a Ground Plane 

( )250 sec, 50t Nµ= =  

In this chapter, the mathematical foundations of a frequency diverse array were 

established and the theory was presented. MATLAB simulations used to support the 

theory of FDAs showed that interelement frequency increment generates a range, time- 

and angle- dependent pattern. Since this pattern scans all angles, it can be considered as a 

novel electronic scanning method. Moreover, this pattern has its maxima at different 

ranges, which can lead to simultaneous, multiple target detection if the circuitry and right 

digital signal processing techniques are used. In addition to this, FDAs do not use phase 

shifters, which is a great advantage compared to conventional arrays, and they provide a 

way to reduce the cost of radar. In the next chapter, the system design aspects of FDAs 

such as SNR will be addressed briefly. 
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V. TIME DOMAIN RADAR PERFORMACE PREDICTION 

A. INTRODUCTION 

Signal detection on the basis of narrowband signals is commonly used in 

conventional radars. This method of performance analysis only works as long as 

frequency domain assumptions hold [18]. However, in Chapters III and IV, we took a 

time domain approach. The assumptions for frequency domain analysis may no longer 

hold and the performance of the radar in terms of time domain quantities needs to be 

reconsidered.  

In signal processing terms, a function of time is a representation of a signal with 

perfect time resolution, but no frequency information, while the Fourier transform has 

perfect frequency resolution, but no time information. The magnitude of the Fourier 

transform at a point is how much frequency content there is, but location is only given by 

phase, and standing waves are not localized in time—a sine wave continues out to 

infinity, without decaying. This limits the usefulness of the Fourier transform for 

analyzing signals that are localized in time, notably transients, or any signal of finite 

extent. 

Now, consider a rectangular pulse waveform, which has an infinite bandwidth and 

produces a transient due to its rise and fall time. Any sudden change in a signal is 

regarded as a transient, and transients in an input signal disturb the steady-state operation 

of a filter, resulting in a transient response at the filter output. Mathematically, a signal is 

said to contain a transient whenever its Fourier expansion requires an infinite number of 

sinusoids. Conversely, any signal expressible as a finite number of sinusoids can be 

defined as a steady-state signal. Thus, waveform discontinuities are transients, as are 

discontinuities in the waveform slope, curvature, etc. Any fixed sum of sinusoids, on the 

other hand, is a steady-state signal [19].  

Fourier decomposing a transient signal and then trying to reconstruct it without 

knowing the exact phase relation will not work due to the global nature of the Fourier 

http://en.wikipedia.org/wiki/Signal_processing�
http://en.wikipedia.org/wiki/Transient_(acoustics)�
http://www.dsprelated.com/dspbooks/filters/What_Filter.html�
http://www.dsprelated.com/dspbooks/mdft/Sinusoids.html�
http://www.dsprelated.com/dspbooks/mdft/Sinusoids_Exponentials.html�
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transform. The point is that Fourier decomposition of a pulse is a steady-state description 

of a transient state and does not adequately address causality conditions. The problem 

arises in the use of global methods for description of local events and when there is a 

requirement to either transmit or receive instantaneous frequencies and phases [18]. 

Therefore, in order to get the instantaneous frequency content of a signal, one can use 

short-time Fourier transform or wavelets. This problem also can be addressed with the 

use of Cauchy Problem which is a system of partial differential equations of order m from 

the prescribed values of the solution and of its derivates of order less than m on a given 

surface [18]. Since this concept is mathematically tedious, it will not be discussed in this 

thesis.  

A stationary signal has the same statistical characteristics by the shift in the time 

origin. In other words, it has fixed mean and the autocorrelation function is a function of 

time lag. A non-stationary signal does not satisfy the rules defined for the stationary 

signal, and it has different statistical characteristics for the different time lags. In time 

domain signal processing, it is extremely important to know the precise return time of the 

signal at the receiver. Since the Fourier transform is defined from negative infinity to 

positive infinity, the frequency spectrum of the signal will not show the instantaneous 

frequency contents and the local information about the target’s point scatterers will be 

obscured and not be resolved. 

B. FREQUENCY DOMAIN AND TIME DOMAIN RECEIVER PROCESSOR 
DESIGN 

From statistical signal processing, it is accepted that one usually deals with 

random signals which are random processes. Signal processing techniques one uses for 

deterministic signals such as sinusoids do not hold. When the target is at an unknown 

distance, the temporal location of the echo pulse is not predictable [18]. If one takes the 

autocorrelation of a random signal, then valuable information can be extracted. It is well 

known that the Fourier transform of an autocorrelation function gives the power spectral 

density of the signal, which also shows the frequency content of the signal.  
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In [18], it is stated that Fourier transform cannot be applied directly on the 

threshold–detected returned signal due the fact that in the absence of prior knowledge 

regarding the target, the Fourier transformation will not converge. However if time 

domain signal is sampled, what basically happens in autocorrelation, and then another 

type of convergence can be achieved. This condition dictates the use of autocorrelation 

function for the detection of time domain signals. After acquisition of the signal by 

autocorrelation methods, applying the Fourier transform gives the power spectral density 

of the signal. Autocorrelation function and power spectral density together describe the 

signal. 

In the following sections, a brief comparison of time domain and frequency 

domain radar processing is given.  

1. Frequency Domain Receiver 

In the frequency domain, the presence of a target is detected by threshold 

amplitude detection. When the amplitude of the returned signal exceeds the predefined 

threshold value, it is declared as a target on the radar scope. Radar designer needs to 

optimize the threshold for the desired probabilities of false alarm and detection. Defining 

a too low threshold may increase the number of the false alarms where the noise can 

exceed the given threshold value. On the other hand, defining a too high threshold may 

miss targets when they are present. This concept is depicted in Figure 50.  
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Figure 50.   Illustration of the Detection Process and the Effect of the Detection 
Threshold         (a) Noise  (b) Target Signals (c) Signal Plus Noise 

From the viewpoint of detecting frequency domain signals in noise, preserving the 

shape of the signal is of no importance, however for time domain signals in noise, it is 

extremely important. Threshold detection is a local time event. However, autocorrelation 

places a local time event in a global time context. It is this characteristic of the 

autocorrelation that preserves the shape of the signal [18].  

In a frequency domain receiver, the received signal is first amplified with a low 

noise amplifier (LNA) and then down converted to the intermediate frequency or 

baseband by a mixer. The output of the mixer is processed to produce in-phase and 

quadrature baseband signals. A block diagram of a frequency domain receiver is 

illustrated in Figure 51. 
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Figure 51.   Frequency Domain Receiver Block Diagram (After [18]) 

2. Time Domain Receiver 

Time domain receiver can detect and characterize a target much better than a 

frequency domain receiver. However, the right receiver processor design is required. In a 

time domain receiver the target can be detected when the power spectral line 

corresponding to the target exceeds noise or clutter level by a given amount. This process 

is analogous to the threshold detection in frequency domain; but in time domain power 

spectral density is used. For this reason, in time domain analysis power spectral density 

computation is a must.  

Time domain receiver is not only capable of detecting, but also characterizing the 

target. In order to characterize a target, one needs to use further signal processing to 

recognize the target. The only difference between time domain detection and frequency 

detection is that time domain detection depends on the power spectral density, whereas 

frequency domain detection depends on the signal envelope. In time domain detection, 
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autocorrelation is a key, as power spectral density can be computed from autocorrelation. 

Figure 52 shows the block diagram of a time domain receiver where the time signal first 

correlated with homodyne autocorrelator. After the autocorrelation process, the Fourier 

transform is applied and power spectral density is computed. 

 

Figure 52.   Time Domain Receiver Block Diagram (After [18]) 

 In the frequency domain radar range equation, transmitted energy, transmitter 

gain, effective aperture of the antenna, and the receiver sensitivity in terms of SNR play 

an important role. These parameters are equally important in the time domain. However, 

time domain signals carry much more information than frequency domain signals and due 

to the need to process time domain signals an additional receiver gain parameter must be 

added to the time domain radar range equation. 

 Autocorrelation can be applied to periodic and aperiodic signals; however, this is 

not necessary to determine the power and energy spectrum densities. On the other hand, 

autocorrelation is the only means to calculate the power spectral density of a random 

signal. Frequency domain signals can be detected by envelope detection threshold 
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methods, whereas time domain signals can only be detected by power spectral density 

threshold methods if the characterization information of the target is to be preserved.  

Cross-correlation methods can also be used for detection purposes because they 

preserve the signal phase information, as well as the timing information. Autocorrelation 

does not preserve the phasing information. Therefore, cross-correlation might be useful in 

cases where the phase information is critical. Whether autocorrelation or cross-

correlation is used, time domain signals can provide more information than a frequency 

domain signal. 

3. Time Domain Receiver Gain   

In time domain signal processing, target can be considered as an information 

source and the receiver as an information processor. Therefore, the channel between the 

target and the receiver is an information channel. The amount of information the channel 

carries depends on the duration of the signal. Two signals of identical bandwidth but 

different in duration will carry different amounts of information. If these are two signals 

that have the same bandwidth, but one is shorter than the other one in duration, the 

amount of the information carried by the signal of shorter duration will be more than that 

of longer duration. The short signals do not interfere with the resolved target individual 

scatterers and the contribution from each scatterer can be separated in time. On the other 

hand, if a long duration signal is used, the components form elementary scatterers will 

overlap and cannot be resolved in time.  

The more information about the target that is transmitted to the receiver the more 

signal-to-noise (SNR) gain, if that information can be accessed and displayed in the 

power spectral density [18]. One can access that information by using receiver-processor 

gain, which is also known as time scale conversion. The receiver processor gain is 

defined in [18] as 

( )
( )min

/
/

o oc out

o o in

S Ntp
p t S N

υ ∆
= = =

∆
    (103) 
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where p is the time scale conversion factor, t∆  is the duration of the signal, ct∆  is the 

receiver-processor initial sampling rate. We can see that when the processing gain υ  is 

greater than 1, there is an increase in SNR.  

C. TIME DOMAIN RADAR RANGE EQUATION 

The simplest form of the radar range equation was given in Chapter I with 

Equations (9) and (10). This is the frequency domain form of the radar range equation. 

Often it is more convenient to deal with frequency diverse arrays in the time domain. 

Thus, we need to derive a new radar range equation in the time domain. The following 

paragraphs develop the time domain radar range equation as explained in [18].  

Consider a target at a distance R from source that transmits a power of Pt watts 

with gain of tG . The received power from a target with radar cross section (RCS) σ  at 

range R is   

( )

2

32 2 4
Power received =  W

4 4 4
t t t t r

e
PG PG GA

R R R
λ σσ

π π π

    =          
  (104) 

which, at this point, is the same as the frequency domain version of Equation (9). 

The thermal noise at a receiver with 0 290  KT =  is  

BN k TB=       (105) 

where kB is the Stefan Boltzman’s constant and B is the bandwidth of the receiver. At the 

same temperature, the system noise figure is  

( )
( )

/
/

o i i
n

o i o

N N SNRF
S S SNR

= =     (106) 

where “i” denote the input and “o” denote the output. If we use L for all signal loses, then 

SNR before processing can be written using Equations (104), (105) and (106) as  

( )
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The maximum detection range is then  

( ) ( )

1/4
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   (108) 

If the effective aperture of the antenna is used, Equation (108) gives 

( ) ( )
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   (109) 

The maximum range can be defined in terms of energy by simple adding the signal 

duration τ  to Equation (109).  

( ) ( )
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o o n B
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τ σ
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 
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   (110) 

 Equation (109) is the radar range equation in the frequency domain and what is 

commonly seen in textbooks. In frequency domain equation, the maximum range 

depends on the total transmitted energy, transmitter gain, and effective aperture of the 

antenna and receiver noise figure. But, it does not depend on the receiver gain.  

In the time domain radar range equation, the receiver gain has to be considered. If 

the signal is summed coherently and the noise incoherently, then SNR of the summed 

signal can be written as  

signal

noise

P
P

β =       (111) 

and minβ  is the SNR of the sampling window: 

min
min

signal

noise

P
P

β
 

=  
 

     (112) 

 

Then the processing gain can be written as  
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min

βυ
β

=       (113) 

Substituting the receiver processor gain equation into Equation (110) gives the time 

domain radar range equation as  

( ) ( )

1/4
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t t e
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π

 
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 
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   (114) 

where t tE Pτ=  is the total transmitted energy.  

Equation (114) shows that when the receiver gain is equal to 1 (i.e., 1υ = ), we get 

the radar range equation in the frequency domain. Even though this range equation seems 

to be similar to frequency domain range equation, in reality they are quite different. As 

explained in [18] to count for the characteristics of the target, the constraint  

1K
υ
=       (115) 

must be met, where K is the ratio of the target’s maximum length ( )maxα  to the target’s 

minimum length ( )minα :  

max

min

K α
α

=      (116) 

Equation (115) shows that when 1K = , then , 1υ =  which means no processing gain is 

achieved. However, when 2K = , the constraint given in Equation (115) forces the 

processing gain to be 2. Due to the increase in processing gain, greater target resolution 

and greater range can be achieved either by a decrease in the sampling by a half or by 

decreasing the duration of the signal by a half. Thus, the processing gain can be written as 

a function of  

s

τυ
τ

=       (117) 
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where τ  is the pulse duration and sτ  is the sampling window duration. Substituting 

Equations (116) and (117) into Equation (115) gives 

max

min

sK α τ
υ α τ

  =   
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     (118) 

Equation (114) is simulated in MATLAB for increasing energy up to 100 Joules. 

The maximum ranges obtained from this equation are plotted against the energy of the 

signal. In the simulation, the following values were used: 47 dBtG = , 21 meA = , 

20.1 mσ = , 21
0 4x10Bk T −= , 3 dBnF = , 4 dBL = , ( )min

/  13 dBo oS N = . The results are 

shown in Figure 53. 

 

Figure 53.   Ranging and Detection for 1K > , 47 dBtG = , and 1K
υ
=  
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The importance of the processing gain in time domain radar range equation is 

evident from the curves. As the processing gain, υ , increases the greater maximum range 

is achieved. In Figure 53, 1 1.0
υ
=  corresponds to the frequency domain radar range 

equation. This figure also illustrates the advantages of time domain signals against 

frequency domain signals.  

In this chapter, the performance of a radar, which employs a time domain signal 

and the basic principles of receiver design in the time domain, is presented. Since the 

frequency diverse array radar deals with time domain signals, the performance of the 

frequency diverse array radar should be considered in the time domain. The key features 

of time domain detection are: (1) the autocorrelation of the signal in time domain which 

preserves the shaping of the signal; (2) power spectral density which basically allows us 

to detect and characterize the target, and (3) the processing gain which increases the 

maximum range of the radar significantly.  

In the next chapter, conclusions about frequency diverse array and the 

recommendations for the further research will be presented.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The focus of this thesis has been on the investigation of frequency diversity 

among the elements of a linear array which is in literature called frequency diverse array. 

This new and novel electronic scanning technique has been popular for the last 10 years 

and several papers were published concerning this promising electronic scanning 

technique.  

First, the concept of frequency diverse array as a time modulated antenna was 

validated with the MATLAB simulations. It turns out that using a periodic travelling 

pulse waveform and exciting the antenna elements in an on-off-keying fashion generates 

simultaneous pencil beams in the desired directions where each beam is tagged with a 

different frequency. We should also note that the frequency tagging is a function of the 

modulation frequency, which depends on the period of the travelling pulse waveform. In 

Chapter III, several amplitude tapering functions were applied to the time modulated 

frequency diverse array and the results obtained from MATLAB simulation justified the 

given theoretical values. 

Applying a continuous waveform and a small frequency increment compared to 

the carrier frequency generates a range, time and angle dependent array pattern. The most 

important feature of the frequency diverse array is that no phase shifters are needed. This 

unique feature can provide an inexpensive way of accomplishing electronic scanning. It 

can also be used in SAR and GMTI applications as explained in [7]. The periodic nature 

of the pattern in range, angle and time was validated with MATLAB simulations. The 

spiral plot obtained in Chapter IV shows the promising electronic scanning of the 

frequency diverse array where the main beam reaches its maximum value at all angles but 

in different ranges. Although this novel electronic scanning method has advantages over 

conventional arrays, having range dependent pattern may introduce range ambiguity 

problems.  
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The use of the frequency diverse arrays in radar applications can be considered in 

the time domain since time domain signals are used. In the last chapter of this thesis, the 

performance of the time domain receiver was discussed and radar range equation was 

presented. We clearly saw that the processing gain plays a key role in the time domain 

range equation. Therefore, the frequency diverse array receiver antenna can be 

considered as a time domain antenna and the time domain techniques can be applied. 

B. RECOMMENDATIONS FOR FUTURE WORK 

This thesis basically provides the theory of the frequency diverse array antenna. 

Throughout this thesis, theory was supported with MATLAB simulations. Therefore this 

thesis can be considered as an introductory thesis. Due to time limitations, hardware 

implementations could not be done. A future effort may focus on the simulation of the 

frequency diverse array in a computer-aided-design environment such as Microwave 

Studio, Agilent ADS or Labview. The results obtained from these simulations can be 

compared with the results provided in this thesis. 

Another effort may include the implementation of the frequency diverse array 

with hardware. The FDA elements may be placed over a perfectly conducting electric 

ground plane and the results can be compared with the results given in this thesis. 

One can also examine the use of frequency diverse array antenna in radar 

applications and try to derive a specific radar range equation for frequency diverse array 

radar. A further study may also include the definition of signal-to-noise ratio and examine 

how to avoid ambiguities due to the multiple maxima that occur in range and angle for 

FDA.  
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APPENDIX.  MATLAB SOURCE CODES 

This appendix lists all MATLAB programs used in this work.  

clear all 

ArrayFactor.m 

close all 
clc 
  
theta = -180:0.01:180; 
lambda = 1; 
d = lambda/2; 
k = 2*pi/lambda; 
  
N = 6; 
a = ones(1,N); 
  
theta0 = pi/9; 
gamma = k*d*(sind(theta)- sin(theta0)); 
  
sum = 0; 
for n = 0:N-1 
    AF = a(n+1)* exp(1i*n*gamma); 
    sum = sum + AF; 
end 
  
AF = abs(sum); 
normAF = AF./max(AF); 
  
figure(1) 
plot(theta,normAF); 
xlim([-2 2]) 
axis tight 
grid on 
xlabel('\theta, deg'); 
ylabel('Magnitude'); 
  
  
%% 
AF2 = 
sin((pi/lambda).*N.*d.*sind(theta))./(N*sin((pi/lambda).*d.*sind(theta)
)); 
AF2 = abs(sum); 
normAF2 = AF2./max(AF2); 
  
figure(2) 
plot(theta/180,normAF2); 
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clear all 

ApparentAngle.m 

close all 
clc 
  
f1 = 1e5; 
c = 3e8; 
d = (c/f1)/2; 
df = 350; 
  
R = 0:1e3:5e5; 
th = -90:0.1:90; 
  
lR = length(R); 
lth = length(th); 
N = 10; 
th0 = 0; 
psi = zeros(lR,lth); 
  
for n = 1:lR 
    for m = 1:lth 
        psi(n,m) = 
(2*pi*f1*d*sind(th(m))/c)+(2*pi*R(n)*df/c)+(2*pi*df*d*sind(th(m))/c)-
(2*pi*f1*d*sind(th0)/c); 
    end 
end 
  
  
sum = 0; 
  
for k = 0:N-1 
    E = exp(1i*psi*k); 
    sum = sum + E; 
end 
  
AbsSum = abs(sum); 
maxsum = max(max(AbsSum)); 
normsum = AbsSum/maxsum; 
dBsum = 10*log10(normsum); 
  
for n= 1:lR 
    for m = 1:lth 
        if dBsum(n,m)<-50 
            dBsum(n,m) = -50; 
        end 
    end 
end 
     
  
[U,V] = meshgrid(th,R); 
  
mesh(U,V,dBsum); 
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title('\Deltaf = 0 Hz'); 
xlabel('\theta,deg'); 
ylabel('Range,m'); 
zlabel('Relative Power,dB'); 

 

clear all 

TDAFourSeries.m  

close all 
clc 
  
N = 115;     % Number of antenna elements 
nmax = 10;   % Number of beams 
nvec = -nmax:nmax; 
  
theta = -90:0.1:90;  % scan angle 
Nx = length(theta);  % length of the scan angle vector 
  
f_opr = 1e7;         % operating frequency 
f_mod = 1e4;         % modulation frequency 
T = 1/(f_mod);       % Duration of the signal 
  
c = 3e8;             % speed of light 
lambda = c/f_opr;    % wavelength 
d= lambda/2;         % Spacing between antenna elements 
k = 2*pi/lambda;     % wavenumber 
omg_opr = 2*pi*f_opr; % operating frequency in radians 
omg_mod = 2*pi*f_mod; % modulation frequency in radians 
  
  
fs = 2*(f_opr  + max(abs(nvec))*f_mod); % Sampling frequency which ... 
%must be at least twice the highest frequency content of the signal... 
%(Nyquist rate) 
dt = 1/fs;  % time increment 
len = T/dt; % length of the signal 
  
if mod(len,N)~=0            % adjustment for the length of the signal 
    dur = ceil(len/N);      % in order to have equal data points for 
    len = dur * N;          % each antenna element 
else 
    dur = len/N; 
end 
  
tvec = linspace(0,T-dt,len);  % time vector is adjusted according to 
the new length defined above 
  
  
for m = 0:N-1 
    rect(m+1,:) = [zeros(1,m*dur) ones(1,dur) zeros(1,len -
((m+1)*dur))]; 
end 
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figure(1) 
  
for m = 0:N-1 
    plot(tvec, rect(m+1,:));hold on 
end 
axis tight 
hold off 
%% Amplitude Tapering 
A = zeros(1,N);% amplitude 
n = 2; 
for j = 1:N 
    s = ((2*j-(N+1))*d/2)/(d*(N-1)/2); 
    S(j)=s; 
    A(j) = 0.66* cos(pi/2*s)^n; 
end 
A = A + 0.33; 
figure(11) 
plot(A); 
xlabel('Element Number'); 
ylabel('Amplitude'); 
%title ('Cosine Amplitude Tapering, (A(z) = cos^n(\piz/2)) '); 
axis tight 
  
  
%% 
for x = 1:Nx 
    toplam = 0; 
    for m = 0:N-1 
        z = A(1,m+1)* rect(m+1,:).*exp(1i.*k.*m.*d.*sind(theta(x))); 
        toplam = toplam + z; 
        clear z 
    end 
    h (x,:) = toplam; 
    clear toplam 
end 
  
%% Fourier Series 
clear rect 
  
fourierMat=exp(i*2.0*pi*((nvec.'/T) *tvec)); 
for x = 1:Nx 
    f(:,x) = (1/T) * conj(fourierMat) * h(x,:).'* dt;% Fourier 
Coefficients 
end 
  
absf = abs(f); 
maxf = max(max(f)); 
normf = absf/maxf; 
dBf = 20*log10(normf); 
  
figure(2) 
Ny = length(nvec); 
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for y = 1:Ny 
    plot(theta, dBf(y,:));hold on 
end 
axis([-90 90 -60 0]); 
hold off 
ylabel('Relative Power, dB'); 
xlabel('\theta, deg'); 
  
  
%% 
clear h 
clear fourierMat 
clear tvec 
clear dBf 
clear A 
  
deltaf = 0.5e3; 
T = 1/deltaf; 
newtvec = 0:dt:T; 
  
  
for x = 1:Nx 
    toplam = 0; 
    for y = 1:Ny 
        z = f(y,x)* exp(1i*(omg_opr+nvec(y)*omg_mod).*newtvec); 
        toplam = z+toplam; 
        clear z 
    end 
    g(x,:)=toplam; 
    clear toplam 
end 
  
%% 
clear absf N Nx Ny S T c d dt dur f_mod f_opr j k lambda len m maxf ...  
    n nmax nvec omg_opr omg_mod s x y 
clear f 
clear newtvec 
clear normf 
clear freq 
  
  
GF = fft(transpose(g)); 
GF = transpose(GF); 
clear g 
%% 
freq = 0:deltaf:fs; 
[U,V] = meshgrid(freq(1,19750:20250),theta); 
  
figure(4) 
mesh(U,V, abs(GF(:,19750:20250))); 
axis tight 
  
absGF = abs(GF(:,19750:20250)); 
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maxGF = max(max(absGF)); 
normGF = absGF./maxGF; 
GFdb = 20*log10(normGF); 
sizeGF = size(GFdb); 
for g = 1:sizeGF(1) 
    for h = 1:sizeGF(2) 
        if GFdb (g,h) < -50 
            GFdb(g,h) = -50; 
        end 
    end 
end 
  
figure(5) 
mesh(U,V,GFdb); 
xlabel('Frequency, Hz'); 
ylabel('\theta, deg'); 
zlabel('Relative Power, dB'); 
axis tight 
  
 

clear all 

TDAClosedForm.m 

close all 
clc 
  
N = 115; 
n = -10 : 10; 
theta = -90:.01:90; 
f_opr = 1e7; 
f_mod = 1e4; 
c = 3e8; 
lambda = c/f_opr; 
d= lambda/2; 
k = 2*pi/lambda; 
omg_opr = 2*pi*f_opr; 
omg_mod = 2*pi*f_mod; 
  
deltaf = 2e3; 
T = 1/deltaf; 
  
Fmax = 2*(f_opr  + max(abs(n))*f_mod); 
dt = 1/Fmax; 
tvec = 0:dt:T; 
  
  
Ny=length(n); 
for y= 1:Ny 
    a = pi* (sind(theta)-(2*n(y)/N)); 
    f(y,:) = ((-1)^n(y))* sinc(n(y)/N)* exp(1i*(N-
1/2)*pi*sind(theta)).* diric(a,N)*N; 
end 
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absf=abs(f); 
fmax=max(max(absf)); 
fdb=20*log10(absf/fmax); 
for y=1:Ny 
    plot (theta,fdb(y,:)); 
    if y==1, hold on; end 
end 
xlabel('\theta, deg') 
ylabel('dB') 
axis([-90,90,-60,0]) 
title('Closed Form') 
  
%% Complex Pattern 
close all 
clear f 
clear a 
clear absf 
clear fdb 
  
theta = -90:0.1:90; 
Nx=length(theta); 
Ny=length(n); 
  
  
for x = 1:Nx 
    toplam = 0; 
    for y = 1:Ny 
        a = pi* (sind(theta(x))-(2*n(y)/N)); 
        f = ((-1)^n(y))* sinc(n(y)/N)* exp(1i*(N-
1/2)*pi*sind(theta(x))).* diric(a,N)*N; 
        h = f * exp(1i*(omg_opr+n(y)*omg_mod).*tvec); 
        toplam = h+toplam; 
        clear h 
    end 
    g(x,:)=toplam; 
    clear toplam 
end 
  
  
GF = fft(transpose(g)); 
clear g 
GF = transpose(GF); 
freq = 0:deltaf:Fmax; 
  
figure(2) 
plot(freq(4950:5050),abs(GF(:,4950:5050))); 
axis tight 
%% 
clear tvec 
  
[U,V] = meshgrid(freq(4950:5050),theta); 
figure(3) 
mesh(U,V,abs(GF(:,4950:5050))); 
xlabel('Frequency, Hz'); 
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ylabel('\theta, deg'); 
zlabel('Amplitude'); 
axis tight 
  
absGF = abs(GF(:,4950:5050)); 
maxGF = max(max(absGF)); 
normGF = absGF./maxGF; 
GFdb = 20*log10(normGF); 
sizeGF = size(GFdb); 
  
for g = 1:sizeGF(1) 
    for h = 1:sizeGF(2) 
        if GFdb (g,h) < -50 
            GFdb(g,h) = -50; 
        end 
    end 
end 
  
figure(4) 
mesh(U,V,GFdb); 
xlabel('Frequency, Hz'); 
ylabel('\theta, deg'); 
zlabel('Relative Power, dB'); 
axis tight 
  
  
 

clear all 

FDA1.m 

clc 
close all 
  
%--------------------------------------------------------------------% 
% ------------- Time(t) and Scan Angle (Theta) Fixed --------------- % 
%--------------------------------------------------------------------%  
  
N = 17;                % Number of antenna elements 
  
  
c = 3e8;              % speed of light 
f_opr = 1e7;          % operating frequency  
omg_opr = 2*pi*f_opr; % operating frequency in radians 
lambda = c/f_opr;     % wavelength     
d = lambda/2;         % Spacing between antenna elements 
ko = 2*pi/lambda;     % wavenumber 
deltaf = 1e4; 
deltaw = 2*pi*deltaf; 
deltak = deltaw/c; 
  
tvec = 0; 
theta = 0; 
Ro = 0:1:60000; 
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fe = 1; 
  
phi = (deltaw *tvec)+(ko*d*cosd(theta))-(deltak*Ro); 
E = fe* abs(cos((omg_opr*tvec)- (ko*Ro))).* abs(diric(phi,N)*N); 
plot(Ro./1e3,E); 
title('Electric Field vs Range Plot(Time(t) and Scan Angle (\theta_0) 
fixed )'); 
xlabel('Range,km'); 
ylabel('Amplitude'); 
axis tight 
  
%% R and theta fixed, time varying 
clear tvec  
clear theta 
clear tvec 
clear E 
  
tvec = 0:1e-9:2e-4; 
theta = 0; 
Ro = 0; 
fe = 1; 
  
phi = (deltaw *tvec)+(ko*d*cosd(theta))-(deltak*Ro); 
E = fe* abs(cos((omg_opr*tvec)- (ko*Ro))).* abs(diric(phi,N)*N); 
figure 
plot(tvec./1e-6,E); 
title('Electric Field vs Time Plot(Range(R_0) and Scan Angle (\theta_0) 
fixed )'); 
xlabel('Time,\musec'); 
ylabel('Amplitude'); 
axis tight 
%% R and t fixed, theta varying 
  
clear tvec  
clear theta 
clear tvec 
clear E 
  
tvec = 233e-6; 
theta = -180:0.01:180; 
%angvec = cosd(theta); 
Ro = 15; 
fe = 1; 
  
phi = (deltaw *tvec)+(ko*d*cosd(theta))-(deltak*Ro); 
E = fe* abs(cos((omg_opr*tvec)- (ko*Ro))).* abs(diric(phi,N)*N); 
figure 
plot(theta,E); 
title('Electric Field vs Scan Angle Plot(Range(R_0) and Time (t) fixed 
)'); 
xlabel('Scan Angle,(\theta)'); 
ylabel('Amplitude'); 
axis tight 
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figure 
polar(theta*pi/180, E) 
 

clear all 

FDAspiral.m 

clc 
close all 
  
%--------------------------------------------------------------------% 
% ------------- Time(t) and Scan Angle (Theta) Fixed --------------- % 
%--------------------------------------------------------------------% 
  
N = 17;                % Number of antenna elements 
c = 3e8;              % speed of light 
f_opr = 1e7;          % operating frequency 
omg_opr = 2*pi*f_opr; % operating frequency in radians 
lambda = c/f_opr;     % wavelength 
d = lambda/2;         % Spacing between antenna elements 
ko = 2*pi/lambda;     % wavenumber 
deltaf = -1e4; 
deltaw = 2*pi*deltaf; 
deltak = deltaw/c; 
% a = ones(1,N); 
a = binom(N-1); 
tvec = 200e-6; 
theta = -180:180; 
Ro = 0:0.1:90; 
fe = 1; 
  
for n = 1: length(theta) 
    phi(n,:) = (deltaw *tvec)+(ko*d*cosd(theta(n)))-(deltak*Ro*1e3); 
    sum = 0; 
    for m = 0: N-1 
        AF = a(m+1)*exp(1i*m*phi(n,:)); 
        sum = sum + AF; 
        clear AF 
    end 
    E(n,:) = (fe* exp(1i*((omg_opr*tvec)- (ko*Ro*1e3))).* sum); 
end 
  
% no plot of figure 1 
iplt=0; 
if iplt==1 
    figure(1) 
    absE = abs(E); 
    maxE = max(max(absE)); 
    normE = absE./maxE; 
    [U,V] = meshgrid(Ro,theta); 
    %mesh(U,V,normE); 
    title('Electric Field at a fixed time, t = 233\musec'); 
    xlabel('Range,km'); 
    ylabel('Scan Angle, \theta,degrees') 
    zlabel('Normalized Amplitude of Electric Field, |E_N_O_R_M|'); 
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end 
  
% do a rectangular grid ----------------------------------------- 
z=[-50000:100:50000];   % range steps in km 
x=[0:100:50000]; 
[X,Y]=meshgrid(x,z); 
Ngx=length(x); 
Ngz=length(z); 
msg = ['Computing....']; 
hwait=waitbar(0,msg); 
% time snapshots from t1 to t2 
t1=250e-6; 
t2=550e-6; 
dt=25e-6; 
Nt=floor((t2-t1)/dt)+1; 
for it=1:Nt   % time loop 
    t=t1+(it-1)*dt; 
    disp(['time ',num2str(it),' of ',num2str(Nt)]) 
    for i=1:Ngx 
        waitbar(((it-1)*Ngx+i)/(Nt*Ngx),hwait); 
        for n=1:Ngz 
            R0=sqrt(x(i)^2+z(n)^2); 
            ct=z(n)/(R0+1e-6);     % cos(theta) at grid points 
            phi=deltaw*(t-R0/c)+ko*d*ct; 
            arg=phi/2; 
            SSinc=N; 
            if abs(arg)>0.0001, SSinc=sin(N*arg)/sin(arg); end 
            E(i,n)=abs(SSinc); 
        end 
    end 
    Emax=max(max(E)); 
    normE=abs(E/Emax); 
    normEdB = 20*log10(normE); 
    figure(2) 
    contourf(Y/1e3,X/1e3,normE',[.5,.5]) 
    colorbar 
     xlabel('z, km') 
    ylabel('x, km') 
    Mov(it)=getframe; 
end 
disp('saving movie') 
close(hwait); 
movie(Mov,3)   % play the movie 10 times 
movie2avi(Mov,'\\comfort\aaytun$\Desktop\ArrayMov3'); 
%% ------------------------------------------------------------------- 
clear E 
  
t1=225e-6; 
t2=225e-6; 
dt=10e-6; 
Nt=floor((t2-t1)/dt)+1; 
for it=1:Nt   % time loop 
    t=t1+(it-1)*dt; 
    theta = 0:0.01:2*pi; 
    Ro = 30000; 
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    fe = 1; 
  
    for n = 1: length(theta) 
        phi = (deltaw *t)+(ko*d*cos(theta(n)))-(deltak*Ro); 
        sum = 0; 
        for m = 0: N-1 
            AF = a(m+1)*exp(1i*m*phi); 
            sum = sum + AF; 
        end 
        E(n,:) = fe* exp(1i*((omg_opr*tvec)- (ko*Ro))).* sum; 
    end 
    int_emp = 120*pi; 
    absE = abs(E); 
    S = (1/2)* (absE.^2)./int_emp; 
    maxS = max(max(S)); 
    Fpat = S./maxS; 
  
    figure(4) 
    polar(theta,Fpat.') 
%         M(it) = getframe; 
end 
disp('saving movie'); 
movie(M) 
movie2avi(M,'\\comfort\aaytun$\Desktop\ArrayMov2'); 
  

 

warning off 

FDA_GP.m 

clear all 
clc 
close all 
  
N = 10;               % Number of antenna elements 
c = 3e8;              % speed of light 
f_opr = 1e9;          % operating frequency 
omg_opr = 2*pi*f_opr; % operating frequency in radians 
lambda = c/f_opr;     % wavelength 
d = lambda/2;         % Spacing between antenna elements 
ko = 2*pi/lambda;     % wavenumber 
deltaf = 1e4; 
deltaw = 2*pi*deltaf; 
deltak = deltaw/c; 
beta = 2*pi/lambda; 
h = 0.25*lambda ; 
%% Amplitude Tapering 
% a = binom(N-1); 
% a = ones(1,N);  
n = 1; 
for j = 1:N 
    s = ((2*j-(N+1))*d/2)/(d*(N-1)/2); 
    S(j)=s; 
    a(j) =  cos(pi/2*s)^n; 
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end 
%   a = 0.33+a; 
figure(1) 
plot(a); 
xlabel('Element Number'); 
ylabel('Amplitude'); 
title ('Amplitude Tapering'); 
axis tight 
  
%% 
  
fe = 1; 
rad = pi/180; 
  
  
z = -50000:500:50000; 
x =  0:500:50000; 
y =  0; 
  
[X,Z] = meshgrid(x,z); 
  
Ngz = length(z); 
Ngx = length(x); 
  
msg = 'Computing....'; 
hwait=waitbar(0,msg); 
% time snapshots from t1 to t2 
t1=250e-6; 
t2=450e-6; 
dt=25e-6; 
Nt=floor((t2-t1)/dt)+1; 
  
for it=1:Nt   % time loop 
    t=t1+(it-1)*dt; 
    disp(['time ',num2str(it),' of ',num2str(Nt)]) 
    for p = 1:Ngx 
        waitbar(((it-1)*Ngx+p)/(Nt*Ngx),hwait); 
        for q = 1: Ngz 
  
            r0 = sqrt(x(p)^2 + y^2)+1e-6; 
            R0 = sqrt(x(p)^2 + y^2 + z(q)^2)+1e-6; 
            ct = z(q)/R0; 
            st = r0/R0; 
            cphi = x(p)/r0; 
            sphi = y/r0; 
  
            psi = (deltaw *t)+(ko*d*ct)-(deltak*R0); 
  
            sum = 0; 
            for m = 0: N-1 
                Ssum = a(m+1)*exp(1i*m*psi); 
                sum = sum + Ssum; 
                clear Ssum 
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            end 
            AF(p,q) = sum; 
            E(p,q) = 2 * 1i * fe * exp(1i*(omg_opr*t - ko*R0))* 
sin(ko*h*st)* AF(p,q); 
        end 
    end 
     
    absE = abs(E); 
    maxE = max(max(absE)); 
    normE = absE./maxE; 
  
    figure (2) 
    C=[0.5 0.5]; 
    contourf(Z'/1e3,X'/1e3,normE); 
    colorbar 
    xlabel('z, km'); 
    ylabel('x, km'); 
    M(it) = getframe; 
end 
disp('saving movie') 
close(hwait); 
movie(M,3) 
movie2avi(M,'\\comfort\aaytun$\Desktop\GroundPlane'); 
 

clear all 

TDRRE.m 

close all 
clc 
  
GtdB = 47; 
Gt = 10^(GtdB/10); 
Ae = 1; 
sig = 0.1; 
kT = 4e-21; 
FndB = -3; 
Fn = 10^(FndB/10); 
LdB = -4; 
L = 10^(LdB/10); 
SNRmindB = 13;  
SNRmin = 10^(SNRmindB/10); 
B = 1; 
E = 0:.1:100; 
invnu = 0.1:0.3:1; 
nu = 1./invnu; 
colorvec = ['k' 'b' 'r'  'g' ] ; 
for n = 1:length(nu) 
R(n,:) = (E*Gt*sig*Ae*nu(n))/(((4*pi)^2)*SNRmin*Fn*L*kT*1e3*B); 
R(n,:) = R(n,:).^(1/4); 
plot(E,R(n,:)/1e3,colorvec(n)) 
hold on 
end 
hold off 
xlabel('Energy, Joules'); 



 105 

ylabel('Range, Km'); 
legend('1/\nu = 0.1','1/\nu = 0.4', '1/\nu = 0.7', '1/\nu = 1.0',... 
    'location','northwest'); 
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